Developing steady laminar flow through uniform straight tubes with varying wall cross curvature.

Comput Methods Biomech Biomed Engin

Laboratoire de Mécanique Physique, CNRS UMR 7052 B2OA Faculté des Sciences et Technologie, Université Paris XII-Val-de-Marne 61, 94010 Créteil Cédex, France.

Published: December 2004

Numerical calculations are used to determine not only the wall shear stress but also the entry length in a laminar steady flow of an incompressible Newtonian fluid. The fluid is conveyed through rigid straight tubes with axially uniform cross sections, which mimic collapsed vessels. For each tube configuration, the "Navier-Stokes" equations are solved using the finite element method. The numerical tests are performed with the same value of the volume flow-rate whatever the tube configuration for three "Reynolds numbers". The wall shear stress is computed and determined along the axis of the tube, then the entry length is estimated by introducing two indexes by using: (i) the axial fluid velocity, and (ii) the wall shear stress. The results are analysed in order to exhibit the mechanical environment of cultured endothelial cells in the flow chamber for which the test conditions will be well-defined. For example, in a tube configuration where the opposite walls are in contact for which the inner perimeter and the area of the cross section are respectively given by 45 mm and 37.02 mm(2), the computed entry lengths with the criteria defined by (i) and (ii) are equals to about 118 and 126 mm, respectively for R(e0) = 500.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10255840412331332067DOI Listing

Publication Analysis

Top Keywords

wall shear
12
shear stress
12
tube configuration
12
straight tubes
8
entry length
8
developing steady
4
steady laminar
4
laminar flow
4
flow uniform
4
uniform straight
4

Similar Publications

Objective: The study aims to elucidate the mechanisms underlying plaque growth by analyzing the variations in hemodynamic parameters within the plaque region of patients' carotid arteries before and after the development of atherosclerotic lesions.

Methods: The study enrolls 25 patients with common carotid artery stenosis and 25 with tandem carotid artery stenosis. Based on pathological analysis, three-dimensional models of the actual blood vessels before and after the lesion are constructed for two patients within a two-year period.

View Article and Find Full Text PDF

: Sinus lifting, a procedure to augment bone in the maxilla, may cause complications such as sinusitis due to impaired drainage. This study aimed to assess how sinus lifting impacts airflow in the sinus cavity, which is essential for patients undergoing dental implants. Using computational fluid dynamics (CFD), this research analyzed airflow changes after sinus floor elevation, offering insights into the aerodynamic consequences of the procedure.

View Article and Find Full Text PDF

Simulating the cardiac valves is one of the most complex tasks in cardiovascular modeling. As fluid-structure interaction simulations are highly computationally demanding, machine-learning techniques can be considered a good alternative. Nevertheless, it is necessary to design many aortic valve geometries to generate a training set.

View Article and Find Full Text PDF

To achieve the assembled connection between dovetail profiled steel sheets and the boundary members in dovetail profiled steel concrete composite shear walls (DPSCWs), self-tapping screws were employed. Three DPSCW specimens connected with self-tapping screws were tested under combined axial and cyclic lateral loads to evaluate their hysteretic response, focusing on the influence of the number of self-tapping screws and the axial compression ratio. The self-tapping screw-connected DPSCWs exhibited a mixed failure mode, characterized by shear failure of the profiled steel sheets and compression-bending failure of multiple wall limbs divided by ribs on the web concrete.

View Article and Find Full Text PDF

Cell-laden, scaffold-based tissue engineering methods have been successfully utilized for the treatment of bone fractures. In such methods, the rate of scaffold biodegradation, transport of nutrients, and removal of cell metabolic wastes are critical fluid-dynamics factors, affecting tissue regeneration. Therefore, there is a critical need to identify the underlying material transport mechanisms associated with stem cell-driven, scaffold-based bone tissue regeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!