Chronic hyperalgesic priming in the rat involves a novel interaction between cAMP and PKCepsilon second messenger pathways.

Pain

Department of Oral and Maxillofacial Surgery, and Program in Neuroscience, University of California, San Francisco, CA 94143-0440, USA.

Published: January 2005

Toward the goal of defining new pharmacological targets for the treatment of chronic pain conditions, in previous studies we established a model, termed 'hyperalgesic priming,' in which an acute inflammatory stimulus causes a long-lasting latent susceptibility to hyperalgesia induced by subsequent exposures to the inflammatory mediator, prostaglandin E2 (PGE2). Those investigations suggested the hypothesis that priming induces a novel linkage between the PGE2-activated second messenger cascade and the epsilon isoform of protein kinase C (PKCepsilon). In the present study, comparison of dose-response relations for hyperalgesia produced by PGE2, forskolin, 8-Br-cAMP, or the protein kinase A (PKA) catalytic subunit, in primed versus normal animals, demonstrated that priming-induced enhancement of the PGE2-activated second messenger cascade occurs downstream to adenylate cyclase and upstream to PKA. Therefore, PGE2-induced hyperalgesia in the primed animal is enhanced by the recruitment of a novel cAMP/PKCepsilon signaling pathway in addition to the usual cAMP/PKA pathway. These observations suggest that pharmacological disruption of the novel interaction between cAMP and PKCepsilon might provide a route toward the development of highly specific methods to reverse cellular processes that underlie chronic pain states.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pain.2004.10.021DOI Listing

Publication Analysis

Top Keywords

second messenger
12
novel interaction
8
interaction camp
8
camp pkcepsilon
8
chronic pain
8
pge2-activated second
8
messenger cascade
8
protein kinase
8
chronic hyperalgesic
4
hyperalgesic priming
4

Similar Publications

From dual nucleic acid co-extraction to co-sequencing: A highly integrated next-generation forensic DNA and RNA sequencing experimental workflow.

Forensic Sci Int Genet

January 2025

Key Laboratory of Forensic Genetics of Ministry of Public Security, Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China; School of Forensic Medicine, Kunming Medical University, Kunming 650500, China. Electronic address:

DNA and RNA markers are significant in forensic practices, such as individual and body fluid identification. However, forensic DNA and RNA markers were separately analyzed in most forensic experiments, which resulted in large amounts of sample consumption, complex procedures, and weak inter-evidence correlation. While several integrated methods based on capillary electrophoresis and next-generation sequencing technologies were reported, integrated procedures were mostly on nucleic acid co-extraction, co-electrophoresis, or co-sequencing, and the number and type of markers co-tested were limited.

View Article and Find Full Text PDF

Bacterial sensor evolved by decreasing complexity.

Proc Natl Acad Sci U S A

February 2025

Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada 18008, Spain.

Bacterial receptors feed into multiple signal transduction pathways that regulate a variety of cellular processes including gene expression, second messenger levels, and motility. Receptors are typically activated by signal binding to ligand-binding domains (LBDs). Cache domains are omnipresent LBDs found in bacteria, archaea, and eukaryotes, including humans.

View Article and Find Full Text PDF

The zona glomerulosa (ZG) synthesizes the mineralocorticoid aldosterone. The primary role of aldosterone is the maintenance of volume and electrolyte homeostasis. Aldosterone synthesis is primarily regulated via tightly controlled oscillations in intracellular calcium levels in response to stimulation.

View Article and Find Full Text PDF

Purpose: To investigate the effect of Ca2+/calmodulin-dependent protein kinase II (CAMKII) δ subtypes (CAMK2D) on sodium iodate (NaIO3)-induced retinal degeneration in mice.

Methods: Bioinformatics analysis and Western blot experiments were used to screen the significantly differentially expressed genes in age-related macular degeneration (AMD) disease. CAMK2D knockdown and overexpression models were constructed by lentivirus (LV) infection of adult retinal pigment epithelial cell line-19 (ARPE-19) cells in vitro.

View Article and Find Full Text PDF

The universal bacterial second messenger bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) plays critical roles in regulating a variety of bacterial functions such as biofilm formation and virulence. The metabolism of c-di-GMP is inversely controlled by diguanylate cyclases (DGCs) and phosphodiesterases (PDEs). Recently, increasing studies suggested that the protein-protein interactions between DGCs/PDEs and their partners appear to be a common way to achieve specific regulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!