Tumor necrosis factor alpha (TNFalpha) and interleukin 1beta (IL-1beta) are pro-inflammatory cytokines capable of altering the sensitivity of sensory neurons. Because sensitization elicited by IL-1beta and TNFalpha is blocked by inhibition of the inducible enzyme, cyclooxygenase-II (COX-2), we examined whether these cytokines could increase COX-2 expression in dorsal root ganglion (DRG) cultures. Treatment of cell cultures with either IL-1beta or TNFalpha increases immunoreactive COX-2, as measured by immunoblotting, in a time- and concentration-dependent manner. A 24-h pretreatment with 10 ng/ml IL-1beta or 50 ng/ml TNFalpha augmented COX-2 expression 50- and 8-fold over basal levels, respectively. Immunohistochemistry established the presence of COX-2-like immunoreactivity in both neuronal and non-neuronal cells in culture. The addition of IL-1 receptor antagonist blocked the induction of COX-2 expression by IL-1beta, but did not alter TNFalpha-stimulated increases in COX-2, indicating that the mechanism of TNFalpha is not limited to increasing the expression of IL-1beta. The basal and TNFalpha-induced expression of COX-2 was not dependent on the presence of NGF in the growth media. IL-1beta and TNFalpha treatment for 24 h enhanced prostaglandin E2 (PGE2) production 2-4-fold, which was blocked by pretreatment with the COX-2 inhibitor, NS-398. Exposing cultures to PGE2, IL-1beta, or TNFalpha for 24 h did not alter PGE2 receptor (EP) mRNA levels. These results indicate that TNFalpha and IL-1beta induce the functional expression of COX-2 but not EP receptors in DRG cells in culture and suggest that cytokine-induced sensitization of sensory neurons is secondary to prostaglandin production and not alterations in EP receptors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pain.2004.09.031 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!