The quantization of glycated isoforms of hemoglobin has been increasingly used in clinical practice in recent years. Glycated hemoglobin is currently considered the most important measurement for long-term control of the glycemic state and it has become a reference tool for the management of diabetes. Glutathionylated hemoglobin is an increasingly clinically relevant covalent adduct of glutathione with beta chain of the globin and its concentration has been correlated with oxidative stress. We have developed an innovative technique based on linear mode matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry for quantitative analysis of hemoglobin species. This method was applied to the quantification of glycated and glutathionylated hemoglobin. A rigorous comparison was pursued to evaluate the analytical performances in quantifying glycated hemoglobin in comparison to an established high-performance liquid chromatography method. Our results indicated a complete equivalence between the two methods. The same analysis enabled the quantitative determination of the glutathionylated hemoglobin fraction. This isoform was investigated in an adult Italian population (184 individuals, 101 males and 83 females), indicating a bimodal distribution of this species. In fact 65.22% of screened individuals had glutathionylated hemoglobin levels lower than 0.50% while 34.78% had glutathionylated hemoglobin levels higher than 0.50%. A semiautomatic robotic procedure was developed for fast analysis of a large number of samples. This is the first report of a quantitative application of linear MALDI-TOF mass spectrometry for the determination of glutathionylated hemoglobin in blood samples. This method allows fast screening of this hemoglobin isoform, therefore opening the route to explore its specificity and sensitivity as a molecular biomarker.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ab.2004.10.002DOI Listing

Publication Analysis

Top Keywords

glutathionylated hemoglobin
28
hemoglobin
12
mass spectrometry
12
glycated glutathionylated
8
matrix-assisted laser
8
laser desorption
8
desorption ionization-time
8
ionization-time flight
8
hemoglobin increasingly
8
glycated hemoglobin
8

Similar Publications

Effects of Melatonin on Exercise-Induced Oxidative Stress in Adults with Obesity Undergoing a Multidisciplinary Body Weight Reduction Program.

J Clin Med

September 2024

Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Laboratory for Auxo-Endocrinological Research, 28824 Piancavallo-Verbania, Italy.

Obesity is characterized by increased oxidative stress, which, in a vicious circle, promotes chronic low-grade inflammation. Melatonin, a well-documented antioxidant, might be useful as a supplement to enhance the cardiometabolic benefits of any body weight reduction program (BWRP). The present study aimed to evaluate the post-exercise oxidative stress and inflammation in a group of subjects with obesity treated with melatonin (2 mg/die) or placebo, undergoing a 2-week BWRP, with the administration of a single bout of acute exercise at the start and the end of the protocol (G1-G15).

View Article and Find Full Text PDF

Intracellular tripeptide glutathione is an important agent of cell survival under hypoxia. Glutathione covalently binds to SH groups of hemoglobin cysteine residues, protecting them from irreversible oxidation, and changes its affinity to oxygen. Reduced glutathione (GSH) can also form a noncovalent complex with hemoglobin.

View Article and Find Full Text PDF

Metabolic stress caused by a lack of glucose significantly affects the state of red blood cells, where glycolysis is the main pathway for the production of ATP. Hypoglycemia can be both physiological (occurring during fasting and heavy physical exertion) and pathological (accompanying a number of diseases, such as diabetes mellitus). In this study, we have characterized the state of isolated erythrocytes under metabolic stress caused by the absence of glucose.

View Article and Find Full Text PDF

Hemoglobin is one of the proteins that are more susceptible to S-glutathionylation and the levels of its modified form, glutathionyl hemoglobin (HbSSG), increase in several human pathological conditions. The scope of the present review is to provide knowledge about how hemoglobin is subjected to S-glutathionylation and how this modification affects its functionality. The different diseases that showed increased levels of HbSSG and the methods used for its quantification in clinical investigations will be also outlined.

View Article and Find Full Text PDF

Hemoglobin is the main protein of red blood cells that provides oxygen transport to all cells of the human body. The ability of hemoglobin to bind the main low-molecular-weight thiol of the cell glutathione, both covalently and noncovalently, is not only an important part of the antioxidant protection of red blood cells, but also affects its affinity for oxygen in both cases. In this study, the properties of oxyhemoglobin in complex with reduced glutathione (GSH) and properties of glutathionylated hemoglobin bound to glutathione via an SS bond were characterized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!