Several specimens of anhydrous ampicillin were prepared by heating the ampicillin trihydrate at 100, 120, 140 and 160 degrees C. The effects of dehydration temperature on water vapor adsorption, dissolution behavior and surface property were investigated. The water vapor adsorption of anhydrous ampicillin was studied at 89% relative humidity, 40 degrees C and the water vapor adsorption rate was found to decrease with increase of dehydration temperature. Dissolution profiles of the various anhydrous specimens were investigated in 96% ethanol at 35 degrees C by the static disk method. The anhydrous form prepared at higher dehydration temperature exhibited faster dissolution rate. Solid phase transformation from the anhydrous form to the trihydrate form occurred during the dissolution test. The rate of phase transformation during the dissolution test decreased with increasing dehydration temperature. Topographic difference of the anhydrous forms prepared at 100 and 160 degrees C was not observed by scanning electron microscopy (SEM) and atomic force microscopy (AFM); however, difference of the microstructural properties was apparently observed by the AFM phase image. Surface free energy study revealed that when ampicillin was dehydrated at high temperature, the sample surface became more hydrophobic resulting in less interaction force with water and slow water sorption rate. From the results, we concluded that the polarity of sample surface induced by dehydration of ampicillin would affect the phase transformation and dissolution behavior.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2004.10.001DOI Listing

Publication Analysis

Top Keywords

dehydration temperature
20
water vapor
16
vapor adsorption
16
dissolution behavior
12
phase transformation
12
temperature water
8
adsorption dissolution
8
behavior surface
8
surface property
8
anhydrous ampicillin
8

Similar Publications

Development of a Portable Rapid Detection Method for Porcine Epidemic Diarrhea Virus Using Reverse Transcription-Recombinase-Aided Amplification Technology.

Animals (Basel)

January 2025

Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education, Single Molecule Biochemistry & Biomedicine Laboratory (Sinmolab), College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.

Porcine epidemic diarrhea virus (PEDV) continues to spread globally, causing clinical symptoms in piglets, including watery diarrhea, vomiting, and dehydration. Its exceptionally high morbidity and mortality rate contributes significantly to the economic losses of the swine industry. The continuous genetic mutations of PEDV have compromised the effectiveness of classical strain vaccines.

View Article and Find Full Text PDF

This study examined how temperature, cheese mass and moisture content impact moisture loss rate in various cheeses during baking. Understanding these factors is essential for determining the browning properties of cheese during baking. Eight cheese types, differing in moisture content, were baked at 100-200 °C in a halogen moisture analyzer, and moisture loss over time was recorded.

View Article and Find Full Text PDF

It is well recognised that endothermic processes such as dehydration and partial melting have the potential to exert measurable effects on the maximum temperatures reached in metamorphic rock systems. We show migmatitic metapelitic and mafic granulites record temperatures of ~ 820 °C, while spatially associated refractory Mg-Al-rich granulites record temperatures between 865 °C and > 920 °C. These thermally contrasting samples are separated by ~ 1500 m, with no apparent intervening faults or shear zones to explain the apparent difference in peak metamorphic conditions.

View Article and Find Full Text PDF

Salt-welding strategy for the design of repairable impact-resistant and wear-resistant hydrogels.

Sci Adv

January 2025

School of Materials Science & Chemical Engineering, Ministry of Education Key Laboratory of Impact and Safety Engineering, Ningbo University, Ningbo 315211, China.

Self-healing hydrogels can autonomously repair damage, enhancing their performance stability and broadening their applications as soft devices. Although the incorporation of dynamic interactions enhances self-healing capabilities, it simultaneously weakens the hydrogels' strength. External stimuli such as heating, while accelerating the healing process, may also lead to dehydration.

View Article and Find Full Text PDF

Inulin Dehydration to 5-HMF in Deep Eutectic Solvents Catalyzed by Acidic Ionic Liquids Under Mild Conditions.

ChemSusChem

January 2025

Dipartimento di Scienze Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze, Ed. 17, 90128, Palermo, Italia.

Valorization of carbohydrate-rich biomass by conversion into industrially relevant products is at the forefront of research in sustainable chemistry. In this work, we studied the inulin conversion into 5-hydroxymethylfurfural, in deep eutectic solvents, in the presence of acidic task-specific ionic liquids as catalysts. We employed aliphatic and aromatic ionic liquids as catalysts, and choline chloride-based deep eutectic solvents bearing glycols or carboxylic acids, as solvents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!