AI Article Synopsis

Article Abstract

Caste differentiation and reproductive division of labor are the hallmarks of insect societies. In ants and other social Hymenoptera, development of female larvae into queens or workers generally results from environmentally induced differences in gene expression. However, several cases in which certain gene combinations may determine reproductive status have been described in bees and ants. We investigated experimentally whether genotype directly influences caste determination in two populations of Pogonomyrmex harvester ants in which genotype-caste associations have been observed. Each population contains two genetic lineages. Queens are polyandrous and mate with males of both lineages , but in mature colonies, over 95% of daughter queens have a pure-lineage genome, whereas all workers are of F1 interlineage ancestry. We found that this pattern is maintained throughout the colony life cycle, even when only a single caste is being produced. Through controlled crosses, we demonstrate that pure-lineage eggs fail to develop into workers even when interlineage brood are not present. Thus, environmental caste determination in these individuals appears to have been lost in favor of a hardwired genetic mechanism. Our results reveal that genetic control of reproductive fate can persist without loss of the eusocial caste structure.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cub.2004.12.027DOI Listing

Publication Analysis

Top Keywords

harvester ants
8
caste determination
8
workers interlineage
8
caste
5
loss phenotypic
4
phenotypic plasticity
4
plasticity generates
4
generates genotype-caste
4
genotype-caste association
4
association harvester
4

Similar Publications

Maize productivity has remained low and has worsened in the wake of a changing climate, resulting in new invasive pests, with pests that were earlier designated as minor becoming major and with pathogens being transported by pests and/or entering their feeding sites. A study was conducted in 2021 in the Kisumu and Makueni counties, Kenya, to determine how different maize cropping systems affect insect diversity, insect damage to maize, and insects' ability to spread mycotoxigenic fungi in pre-harvest maize. The field experiments used a randomized complete block design, with the four treatments being maize monocrop, maize intercropped with beans, maize-bean intercrop with the addition of at planting, and push-pull technology.

View Article and Find Full Text PDF

The life history of harvester ant colonies.

Philos Trans R Soc Lond B Biol Sci

December 2024

Department of Biology, Stanford University, Stanford 94305, USA.

A long-term study of a population of desert seed-eating ant colonies of the red harvester ant, , in New Mexico, USA, shows that a colony can live for 20-30 years-the lifespan of its founding queen. A colony's collective behaviour shifts in the course of its life history. These changes, generated by social interactions within the colony, adjust the behaviour of the colony as it grows older and larger, in response to its environment and neighbouring colonies.

View Article and Find Full Text PDF

Consumers exert top-down controls on dryland ecosystem function, but recent increases in fire activity may alter consumer communities in post-fire environments. Native consumers, including ants and rodents, likely have critical roles in defining post-fire plant community assembly and resilience to biological invasions. This study aimed to understand how western harvester ants (Pogonomyrmex occidentalis) that form mounds and large vegetation-free disks that significantly influence plant community structure in the Great Basin Desert respond to fire and rodent community abundance.

View Article and Find Full Text PDF

Using a selection of native grass and forb seeds commonly seeded in local restoration projects, we conducted a field experiment to evaluate the effects of seed species, distance of seed patches from nests, and distance between patches on patterns of seed removal by Owyhee harvester ants, Pogonomyrmex salinus (Olsen) (Hymenoptera: Formicidae). To provide context for ants' seed preferences, we evaluated differences in handling time among seed species. In addition, we assessed the influences of cheatgrass, Bromus tectorum (L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!