Pituitary adenylate cyclase-activating polypeptide (PACAP) has been implicated in several physiological functions. Several lines of evidence from in vitro studies have shown that PACAP plays some important roles in development of nervous system such as neural proliferation and differentiation. Recently, mice lacking PACAP have been reported to show a higher mortality shortly after birth, impaired thermal adaptation, and altered psychomotor behaviors. Inasmuch as monoaminergic nervous systems are implicated in these phenotypes and a quite few data have been reported on the role of this peptide in nervous development in vitro, we studied early development [embryonic days 10.5 (E10.5) and 12.5 (E12.5)] of monoaminergic nervous systems in mice lacking PACAP. The fetuses lacking PACAP showed immunoreactivities (IRs) for tyrosine hydroxylase (TH) and serotonin (5-HT) similarly to the wild type. We observed TH-IR in the forebrain [striatal differentiating zone (dz) and hypothalamic dz], midbrain, hindbrain, neural-crest-derived sympathetic ganglionic primordia, ventral spinal cord dz, and bowel at E10.5 in both PACAP null and wild type with no difference. At E12.5, in the wild-type- and PACAP-gene-deficient mice, no differences of 5-HT- and TH-IRs were observed in several brain regions, including brainstem (midbrain and pons). Thus, the depletion of PACAP does not affect monoaminergic nervous systems in the early development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.regpep.2004.08.034DOI Listing

Publication Analysis

Top Keywords

lacking pacap
12
monoaminergic nervous
12
nervous systems
12
pacap-gene-deficient mice
8
mice lacking
8
early development
8
wild type
8
pacap
7
development
5
nervous
5

Similar Publications

Background: Pancreatic adenocarcinoma (PAC) has a poor prognosis and substantially impairs health-related quality of life (HRQoL). Large studies on longitudinal HRQoL in patients with PAC, taking patient treatment into account, are lacking. This study aimed to investigate HRQoL over time in patients with PAC undergoing various treatments.

View Article and Find Full Text PDF

TRPC5: a new entry to the chromaffin cell's palette of ion channels that control adrenal response to hypoglycemia.

EMBO J

December 2024

Department of Drug Science, Lab of Cell Physiology and Molecular Neuroscience, University of Torino, Torino, Italy.

Regulation of glucose levels during insulin-evoked hypoglycemia is impaired in patients with diabetes and can lead to a condition called hypoglycemia-associated autonomic failure (HAAF). The underlying mechanism of the reduced sympathoadrenal response in HAAF patients to counteract hypoglycemia is not yet clarified. In this issue of , Bröker-Lai et al, show that mice lacking TRPC5 channels possess an impaired response to insulin-induced hypoglycemia similar to humans with HAAF.

View Article and Find Full Text PDF

Neurotensin (Nts) is a neuropeptide acting as a neuromodulator in the brain. Pharmacological studies have identified Nts as a potent hypothermic agent. The medial preoptic area, a region that plays an important role in the control of thermoregulation, contains a high density of neurotensinergic neurons and Nts receptors.

View Article and Find Full Text PDF

Background: Pituitary adenylate cyclase-activating peptide (PACAP) is a neuropeptide pivotal in migraine pathophysiology and is considered a promising new migraine drug target. Although intravenous PACAP triggers migraine attacks and a recent phase II trial with a PACAP-inhibiting antibody showed efficacy in migraine prevention, targeting the PACAP receptor PAC1 alone has been unsuccessful. The present study investigated the role of three PACAP receptors (PAC1, VPAC1 and VPAC2) in inducing migraine-relevant hypersensitivity in mice.

View Article and Find Full Text PDF

Oxytocin treatment rescues irritability-like behavior in Cc2d1a conditional knockout mice.

Neuropsychopharmacology

October 2024

Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.

Irritability, a state of excessive reactivity to negative emotional stimuli, is common in individuals with autism spectrum disorder (ASD). Although it has a significant negative impact of patients' disease severity and quality of life, the neural mechanisms underlying irritability in ASD remain largely unclear. We have previously demonstrated that male mice lacking the Coiled-coil and C2 domain containing 1a (Cc2d1a) in forebrain excitatory neurons recapitulate numerous ASD-like behavioral phenotypes, including impaired social behaviors and pronounced repetitive behaviors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!