The 5 K absorption spectrum of Photosystem I (PS I) trimers from Arthrospira platensis (old name: Spirulina platensis) exhibits long-wavelength antenna (exciton) states absorbing at 707 nm (called C707) and at 740 nm (called C740). The lowest energy state (C740) fluoresces around 760 nm (F760) at low temperature. The analysis of the spectral properties (peak position and line width) of the lowest energy transition (C740) as a function of temperature within the linear electron-phonon approximation indicates a large optical reorganization energy of approximately 110 cm(-1) and a broad inhomogeneous site distribution characterized by a line width of approximately 115 cm(-1). Linear dichroism (LD) measurements indicate that the transition dipole moment of the red-most state is virtually parallel to the membrane plane. The relative fluorescence yield at 760 nm of PS I with P700 oxidized increases only slightly when the temperature is lowered to 77 K, whereas in the presence of reduced P700 the fluorescence yield increases nearly 40-fold at 77 K as compared to that at room temperature (RT). A fluorescence induction effect could not be resolved at RT. At 77 K the fluorescence yield of PS I trimers frozen in the dark in the presence of sodium ascorbate decreases during illumination by about a factor of 5 due to the irreversible formation of (P700+)F(A/B-) in about 60% of the centers and the reversible accumulation of the longer-lived state (P700+)FX-. The quenching efficiency of different functionally relevant intermediate states of the photochemistry in PS I has been studied. The redox state of the acceptors beyond A(0) does not affect F760. Direct kinetic evidence is presented that the fluorescence at 760 nm is strongly quenched not only by P700+ but also by 3P700. Similar kinetics were observed for flash-induced absorbance changes attributed to the decay of 3P700 or P700+, respectively, and flash-induced fluorescence changes at 760 nm measured under identical conditions. A nonlinear relationship between the variable fluorescence around 760 nm and the [P700red]/[P700total] ratio was derived from titration curves of the absorbance change at 826 nm and the variable fluorescence at 760 nm as a function of the redox potential imposed on the sample solution at room temperature before freezing. The result indicates that the energy exchange between the antennae of different monomers within a PS I trimer stimulates quenching of F760 by P700+.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbabio.2004.08.009DOI Listing

Publication Analysis

Top Keywords

fluorescence 760
16
fluorescence yield
12
fluorescence
9
arthrospira platensis
8
lowest energy
8
room temperature
8
variable fluorescence
8
0
7
temperature
5
p700+- 3p700-induced
4

Similar Publications

Aggregation control of anionic pentamethine cyanine enabling excitation wavelength selective NIR-II fluorescence imaging-guided photodynamic therapy.

Nat Commun

January 2025

Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology (HUST), Wuhan, China.

Near-infrared (NIR)-II fluorescence imaging-guided photodynamic therapy (PDT) has shown great potential for precise diagnosis and treatment of tumors in deep tissues; however, its performance is severely limited by the undesired aggregation of photosensitizers and the competitive relationship between fluorescence emission and reactive oxygen species (ROS) generation. Herein, we report an example of an anionic pentamethine cyanine (C5T) photosensitizer for high-performance NIR-II fluorescence imaging-guided PDT. Through the counterion engineering approach, a triphenylphosphine cation (Pco) modified with oligoethylene glycol chain is synthesized and adopted as the counterion of C5T, which can effectively suppress the excessive and disordered aggregation of the resulting C5T-Pco by optimizing the dye amphipathicity and enhancing the cyanine-counterion interactions.

View Article and Find Full Text PDF

Heterogeneous distribution of PSI and PSII in thick grana in shade chloroplasts is argued to hinder spillover of chlorophyll excitations from PSII to PSI. To examine this dogma, we measured fluorescence induction at 77K at 690 nm (PSII) and 760 nm (mostly PSI) in the leaf discs of Spinacia oleracea, Cucumis sativus and shade tolerant Alocasia odora, grown at high and low light, and quantified their spillover capacities. PSI fluorescence (FI) consists of the intrinsic PSI fluorescence (FIα) and fluorescence caused by excitations spilt over from PSII (FIβ).

View Article and Find Full Text PDF

Evaluation of wheat drought resistance using hyperspectral and chlorophyll fluorescence imaging.

Plant Physiol Biochem

December 2024

State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, 712100, China; Key Laboratory of Wheat Biology and Genetic Improvement on Northwestern China, Ministry of Agriculture and Rural Affairs, Xianyang, 712100, China. Electronic address:

Photosynthesis drives crop growth and production, and strongly affects grain yields; therefore, it is an ideal trait for wheat drought resistance breeding. However, studies of the negative effects of drought stress on wheat photosynthesis rates have lacked accurate evaluation methods, as well as high-throughput techniques. We investigated photosynthetic capacity under drought stress in wheat varieties with varying degrees of drought stress resistance using hyperspectral and chlorophyll fluorescence (ChlF) imaging data.

View Article and Find Full Text PDF

Objective: To evaluate and compare the accuracy of detection methods for the diagnosis of secondary caries around direct restorations in posterior teeth.

Data: Accuracy parameters including sensitivity, specificity, diagnostic odds ratio (DOR), area under curve (AUC), and partial AUC (pAUC) are generated from studies assessing the accuracy of detection methods for secondary caries.

Sources: Publications from PubMed, Web of Science, Scopus, Medline, EMBASE and Cochrane Library databases.

View Article and Find Full Text PDF
Article Synopsis
  • A study was conducted to evaluate how effective a deep convolutional neural network (DCNN) and image processing analysis are at detecting oral cancers using non-invasive fluorescence visualization, involving 1,076 patients with various oral conditions.
  • The study found that fluorescence visualization loss (FVL) was highly effective in identifying oral cancer, with rates of sensitivity at 96.9% and specificity at 77.3%, while the DCNN showed overall high recall and precision for classifying different oral diseases.
  • The results indicated that the DCNN achieved an impressive sensitivity of 98% and specificity of 92.7% for detecting oral cancer, with an average accuracy across all lesions of 85.1%.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!