Sir-mediated repression can occur independently of chromosomal and subnuclear contexts.

Cell

Department of Pharmacology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.

Published: December 2004

Epigenetic mechanisms silence the HM mating-type loci in budding yeast. These loci are tightly linked to telomeres, which are also repressed and held together in clusters at the nuclear periphery, much like mammalian heterochromatin. Yeast telomere anchoring can occur in the absence of silent chromatin through the DNA end binding factor Ku. Here we examine whether silent chromatin binds the nuclear periphery independently of telomeres and whether silencing persists in the absence of anchorage. HMR was excised from the chromosome by inducible site-specific recombination and tracked by real-time fluorescence microscopy. Silent rings associate with the nuclear envelope, while nonsilent rings move freely throughout the nucleus. Silent chromatin anchorage requires the action of either Ku or Esc1. In the absence of both proteins, rings move throughout the nucleoplasm yet remain silent. Thus, transcriptional repression can be sustained without perinuclear anchoring.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cell.2004.11.008DOI Listing

Publication Analysis

Top Keywords

silent chromatin
12
nuclear periphery
8
rings move
8
silent
5
sir-mediated repression
4
repression occur
4
occur independently
4
independently chromosomal
4
chromosomal subnuclear
4
subnuclear contexts
4

Similar Publications

Random X-chromosome inactivation is a hallmark of female mammalian somatic cells. This epigenetic mechanism, mediated by the long noncoding RNA Xist, occurs in the early embryo and is stably maintained throughout life, although inactivation is lost during primordial germ cell (PGC) development. Using a combination of single-cell allele-specific RNA sequencing and low-input chromatin profiling on developing mouse PGCs, we provide a detailed map of X-linked gene reactivation.

View Article and Find Full Text PDF

The association between late replication timing and low transcription rates in eukaryotic heterochromatin is well known, yet the specific mechanisms underlying this link remain uncertain. In , the histone deacetylase Sir2 is required for both transcriptional silencing and late replication at the repetitive ribosomal DNA (rDNA) arrays. We have previously reported that in the absence of , a de-repressed RNA PolII repositions MCM replicative helicases from their loading site at the ribosomal origin, where they abut well-positioned, high-occupancy nucleosomes, to an adjacent region with lower nucleosome occupancy.

View Article and Find Full Text PDF

Unlabelled: The activity of DNA adenine methyltransferase (Dam) and DNA cytosine methyltransferase (Dcm) together account for nearly all methylated nucleotides in the K-12 MG1655 genome. Previous studies have shown that perturbation of DNA methylation alters global gene expression, but it is unclear whether the methylation state of Dam or Dcm target sites regulates local transcription. In recent genome-wide experiments, we observed an underrepresentation of Dam sites in transcriptionally silent extended protein occupancy domains (EPODs), prompting us to hypothesize that EPOD formation is caused partially by low Dam site density.

View Article and Find Full Text PDF

Widespread 3D genome reorganization precedes programmed DNA rearrangement in .

bioRxiv

January 2025

Departments of Biochemistry & Molecular Biophysics and Biological Sciences, Columbia University, New York, NY 10032, USA.

Genome organization recapitulates function, yet ciliates like possess highly-specialized germline genomes, which are largely transcriptionally silent. During post-zygotic development, 's germline undergoes large-scale genome editing, rearranging precursor genome elements into a transcriptionally-active genome with thousands of gene-sized nanochromosomes. Transgenerationally-inherited RNAs, derived from the parental somatic genome, program the retention and reordering of germline fragments.

View Article and Find Full Text PDF

The ribosomal genes (rDNA genes) encode 47S rRNA which accounts for up to 80% of all cellular RNA. At any given time, no more than 50% of rDNA genes are actively transcribed, and the other half is silent by forming heterochromatin structures through DNA methylation. In cancer cells, upregulation of ribosome biogenesis has been recognized as a hallmark feature, thus, the reduced methylation of rDNA promoter has been thought to support conformational changes of chromatin accessibility and the subsequent increase in rDNA transcription.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!