Fabrication and properties of fullerodendron thin films.

Langmuir

Graduate School of Science and Research Center for Materials Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan.

Published: January 2005

Thin films of fullerodendron (C(60)(Gn-COOMe) (n = 0.5, 1.5, 2.5)), which was synthesized from fullerene and anthracenyl poly(amido amine) dendron with methyl ester terminals and different generations (G), were fabricated by the Langmuir-Blodgett (LB) and adsorption techniques. It was characterized by X-ray reflectometry that the LB films possessed well-ordered structure, although the adsorption method led to random orientation of molecules. As to C(60)(G0.5-COOMe) and C(60)(G1.5-COOMe), the LB films took a four-layer structure consisting of a double layer of molecules, and fullerene moieties exist in the interior of the LB films. On the other hand, C(60)(G2.5-COOMe) led to a two-layer structure in which the fullerene moieties were at the air side and the dendron moieties were at the substrate side. With increasing generation of dendron, the monolayer formation ability at the air/water interface as amphiphilic molecule strengthens and the amphiphilic property becomes superior to the fullerene-fullerene attractive interaction that prevents the monolayer formation. Furthermore, in the case of C(60)(G0.5-COOMe) and C(60)(G1.5-COOMe), the reduction peak in cyclic voltammetry of the LB film remained even after UV light irradiation. On the contrary, the peak of the C(60)(G2.5-COOMe) LB film disappeared, indicating that molecular arrangement in the films affects electrochemical properties.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la048161uDOI Listing

Publication Analysis

Top Keywords

thin films
8
c60g05-coome c60g15-coome
8
fullerene moieties
8
monolayer formation
8
films
6
fabrication properties
4
properties fullerodendron
4
fullerodendron thin
4
films thin
4
films fullerodendron
4

Similar Publications

Efficient thermal generation from solar/electric energy in transparent films remains challenging due to the limited toolbox of high-performance thermal generation materials and methods for microstructure engineering. Here, we proposed a two-step strategy to introduce hierarchical wrinkles to the MXene composite films with high transparency, leading to upgraded photo/electrothermal conversion efficiency. Specifically, the thin film contains protic acid-treated MXene layers assembled with Ag nanowires (H-MXene/Ag NWs).

View Article and Find Full Text PDF

Perovskites at the crossover between ferroelectric and relaxor are often used to realize dielectric capacitors with high energy and power density and simultaneously good efficiency. Lead-free BiNaTiO is gaining importance in showing an alternative to lead-based devices. Here we show that ()BiNaTiO - BaZr Ti O (best: 0.

View Article and Find Full Text PDF

Phase Coexistence Induced Giant Dielectric Tunability and Electromechanical Response in PbZrO Epitaxial Thin Films.

Small

January 2025

State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.

PbZrO (PZO) thin films, as a classic antiferroelectric material, have attracted tremendous attention for their excellent dielectric, electromechanical, and thermal switching performances. However, several fundamental questions remain unresolved, particularly the existence of an intermediate phase during the transition from the antiferroelectric (AFE) to ferroelectric (FE) state. Here, a phase coexistence configuration of an orthorhombic AFE phase and a tetragonal-like (T-like) phase is reported in epitaxial antiferroelectric PZO thin films, with thickness ranging from 16 to 110 nm.

View Article and Find Full Text PDF

InSb is a material of choice for infrared as well as spintronic devices but its integration on large lattice mismatched semi-insulating III-V substrates has so far altered its exceptional properties. Here, we investigate the direct growth of InSb on InP(111)B substrates with molecular beam epitaxial growth. Despite the lack of a thick metamorphic buffer layer for accommodation, we show that quasi-continuous thin films can be achieved using a very high Sb/In flux ratio.

View Article and Find Full Text PDF

Electrochromic materials were discovered in the 1960s when scientists observed reversible changes between the light and dark states in WO thin films under different voltages. Since then, researchers have identified various electrochromic material systems, including transition metal oxides, polymer materials, and small molecules. However, the electrochromic phenomenon has rarely been observed in non-metallic elemental substances.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!