Germline immortality is a topic that has intrigued theoretical biologists interested in aging for over a century. The germ cell lineage can be passed from one generation to the next, indefinitely. In contrast, somatic cells are typically only needed for a single generation and are then discarded. Germ cells may, therefore, harbor rejuvenation mechanisms that enable them to proliferate for eons. Such processes are thought to be either absent from or down-regulated in somatic cells, although cell non-autonomous forms of rejuvenation are formally possible. A thorough description of mechanisms that foster eternal youth in germ cells is lacking. The mysteries of germline immortality are being addressed in the nematode Caenorhabditis elegans by studying mutants that reproduce normally for several generations but eventually become sterile. The mortal germline mutants probably become sterile as a consequence of accumulating various forms of heritable cellular damage. Such mutants are abundant, indicating that several different biochemical pathways are required to rejuvenate the germline. Thus, forward genetics should help to define mechanisms that enable the germline to achieve immortality.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.arr.2004.09.002 | DOI Listing |
Fly (Austin)
December 2025
Department of Biology, Indian Institute of Science Education & Research, Pune, India.
Proper formation and specification of Primordial Germ Cells (PGCs) is of special significance as they gradually transform into Germline Stem Cells (GSCs) that are ultimately responsible for generating the gametes. Intriguingly, not only the PGCs constitute the only immortal cell type but several specific determinants also underlying PGC specification such as Vasa, Nanos and Germ-cell-less are conserved through evolution. In , PGC formation and specification depends on two independent factors, the maternally deposited specialized cytoplasm (or germ plasm) enriched in germline determinants, and the mechanisms that execute the even partitioning of these determinants between the daughter cells.
View Article and Find Full Text PDFGenetics
December 2024
Department of Molecular Biology and Biochemistry, Rutgers The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854, USA.
Nuclear RNAi in C. elegans induces a set of transgenerationally heritable marks of H3K9me3, H3K23me3, and H3K27me3 at the target genes. The function of H3K23me3 in the nuclear RNAi pathway is largely unknown due to the limited knowledge of H3K23 histone methyltransferase (HMT).
View Article and Find Full Text PDFJ Mol Evol
December 2024
National Cancer Institute, 9609 Medical Center Drive, 5E-132, Rockville, MD, 20850, USA.
Most cancers present with mutations or amplifications in distinctive tumor promoter genes that activate principal cell-signaling cascades promoting cell proliferation, dedifferentiation, cell survival, and replicative immortality. Somatic mutations found in this these driver proto-oncogenes invariably result in constitutive activation of the encoded protein. A salient feature of the activating mutations observed throughout many thousands of clinical tumor specimens reveals these driver missense mutations are recurrent and restricted to just one or very few codons of the entire gene, suggesting they have been positively selected during the course of tumor development.
View Article and Find Full Text PDFbioRxiv
November 2024
Department of Molecular Biology and Biochemistry, Rutgers the State University of New Jersey, 604 Allison Road, Piscataway, NJ, USA, 08854.
Int J Mol Sci
October 2024
Institute for Anatomy and Cell Biology, Medical Faculty, University of Heidelberg, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany.
The in vitro generation of spermatogonial stem cells (SSCs) from embryonic stem cells (ESCs) offers a viable approach for addressing male infertility. A multitude of molecules participate in this intricate process, which requires additional elucidation. Despite the decline in SSCs in aged testes, SSCs are deemed immortal since they can multiply for three years with repeated transplantation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!