The phylogeny of the superfamily Tephritoidea (Diptera: Muscomorpha) was reconstructed from three mitochondrial gene fragments (12S, 16S, and COII) using 49 species representing 19 tephritoid and related families. Phylogenetic signal present in different gene fragments as well as combinations of gene fragments was examined using the interior branch and bootstrap test values from minimum evolution method. The minimum evolution, maximum likelihood, and maximum parsimony trees based on a combined dataset of all three gene fragments provided insight concerning the following phylogenetic relationships: (1) two monophyletic groups (Group-1 and -2) within the superfamily Tephritoidea were clearly recognized; they are compatible with Willi Hennig's Pallopteroidea and Otitoidea that are not used in the contemporary higher classification; (2) the non-monophyletic nature of the family Platystomatidae; and (3) a sister group relationship of Conopidae to Tephritoidea was not supported; instead, our result suggested that Conopidae and Diopsidae might be the basal most groups among the schizophoran families included in this study. The combined data of 12S, 16S, and COII genes was found, therefore, to be a viable genetic marker to resolve divergences among families of the Tephritoidea and other related superfamilies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ympev.2004.10.017 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!