There is evidence of variation in the infection dynamics of different Salmonella serotypes in cattle--ranging from transient epidemics to long term persistence and recurrence. We seek to identify possible causes of these differences. In this study we present mathematical models which describe both managed population dynamics and epidemiology and use these to investigate the effects of demographic and epidemiological factors on epidemic behaviour and threshold for invasion. In particular, when the system is perturbed by higher culling or pathogen-induced mortality we incorporate mechanisms to constrain the lactating herd size to remain constant in the absence of pathogen or to lie within a fairly small interval in the presence of pathogen. A combination of numerical and analytical techniques is used to analyse the models. We find that the epidemiologically dominating management group can change from the dry/lactating cycle to the weaned group with increasing culling rate. Pseudovertical transmission is found to have little effect on the invasion criteria, while indirect transmission has significant influence. Pathogen-induced mortality, recovery, immune response and pathogen removal are found to be factors inducing damped oscillations; variation in these factors between Salmonella serotypes may be responsible for some of the observed differences in within herd dynamics. Specifically, higher pathogen-induced mortality, shorter infectious period, more persistent immune response and more rapid removal of faeces result in a lower number of infectives and smaller epidemics but a greater tendency for damped oscillations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtbi.2004.09.015 | DOI Listing |
J Clin Invest
December 2024
Following respiratory infection or injury, neutrophil hyperactivation can damage surrounding lung tissue by releasing harmful compounds. In this issue of the JCI, Moussavi-Harami and colleagues identified tyrosine phosphatase SHP1 as a key negative regulator of neutrophil activation in acute respiratory distress syndrome (ARDS). Neutrophil-specific Shp1 disruption leads to hyperinflammation, pulmonary hemorrhage, and increased mortality in both sterile and pathogen-induced acute lung injury (ALI).
View Article and Find Full Text PDFJ Clin Invest
October 2024
Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine.
COVID-19 remains a significant threat to public health globally. Infection in some susceptible individuals causes life-threatening acute lung injury (ALI/ARDS) and/or death. Human surfactant protein A (SP-A) is a C-type lectin expressed in the lung and other mucosal tissues, and it plays a critical role in host defense against various pathogens.
View Article and Find Full Text PDFSci Total Environ
December 2024
Environmental Change Institute, School of Geography and the Environment, Oxford University, Oxford OX1 3QY, UK; Leverhulme Centre for Nature Recovery, University of Oxford, UK.
Interactions between multiple global change stressors are a defining characteristic of the Anthropocene. Tree-associated pathogens are affecting forested ecosystems worldwide and occur in the context of increased frequency and intensity of extreme climate events such as heat waves, droughts, and floods. The effects of these events, along with subsequent changes in environmental conditions, on remaining and regenerating trees, are not well understood but crucial for the restoration and conservation of forested habitats.
View Article and Find Full Text PDFmSystems
July 2024
Shandong Beiyou Biotechnology Co.,Ltd., Weifang, China.
Skin ulceration syndrome (SUS) is currently the main disease threatening aquaculture due to its higher mortality rate and infectivity, which is caused by . Our previous studies have demonstrated that SUS is accompanied by intestinal microbiota (IM) dysbiosis, alteration of short-chain fatty acids (SCFAs) content and the damage to the intestinal barrier. However, the mediating effect of IM on intestine dysfunction is largely unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!