The extracellular proteome of Xanthomonas campestris pv. campestris (Xcc) cultivated in minimal medium was isolated from the cell-free culture supernatant and separated by two-dimensional gel electrophoresis. This technique resolved 97 clearly visible protein spots, which were excised, digested with trypsin and identified on the basis of their peptide mass fingerprints generated by matrix assisted laser desorption/ionisation-time of flight-mass spectrometry. Using this approach 87 different proteins could be distinguished. The Signal P software predicted putative signal peptides for 53% of the extracellular proteins. These proteins are probably transported over the inner membrane and are localized in the periplasm, the outer membrane or secreted into the extracellular space. Among the secreted proteins are 11 degradative enzymes, which are involved in pathogenesis of Xcc. The proteins without obvious secretion signals are known to serve functions in the cytosol. How the cytosolic proteins are delivered to the extracellular space remains unclear.

Download full-text PDF

Source
http://dx.doi.org/10.1002/pmic.200400905DOI Listing

Publication Analysis

Top Keywords

extracellular proteins
8
xanthomonas campestris
8
campestris campestris
8
extracellular space
8
proteins
7
extracellular
5
comprehensive analysis
4
analysis extracellular
4
proteins xanthomonas
4
campestris
4

Similar Publications

Background: Recent studies show that hyperactivation of mTOR (mammalian target of rapamycin) signaling plays a causal role in the development of thoracic aortic aneurysm and dissection. Modulation of PP2A (protein phosphatase 2A) activity has been shown to be of significant therapeutic value. In light of the effects that PP2A can exert on the mTOR pathway, we hypothesized that PP2A activation by small-molecule activators of PP2A could mitigate AA progression in Marfan syndrome (MFS).

View Article and Find Full Text PDF

Microtubule associated protein 2 (MAP2) interacts with the regulatory protein 14-3-3ζ in a cAMP-dependent protein kinase (PKA) phosphorylation dependent manner. Using selective phosphorylation, calorimetry, nuclear magnetic resonance, chemical crosslinking, and X-ray crystallography, we characterized interactions of 14-3-3ζ with various binding regions of MAP2c. Although PKA phosphorylation increases the affinity of MAP2c for 14-3-3ζ in the proline rich region and C-terminal domain, unphosphorylated MAP2c also binds the dimeric 14-3-3ζ via its microtubule binding domain and variable central domain.

View Article and Find Full Text PDF

A protein corona modulates the function of mineralization-competent matrix vesicles.

JBMR Plus

February 2025

Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil.

Mineralizing cells release a special class of extracellular vesicles known as matrix vesicles (MV), crucial for bone mineralization. Following their release, MV anchor to the extracellular matrix (ECM), where their highly specialized enzymatic machinery facilitates the formation of seed mineral within the MV's lumen, subsequently releasing it onto the ECM. However, how MV propagate mineral onto the collagenous ECM remains unclear.

View Article and Find Full Text PDF

Host cell responses to biofilm-derived extracellular vesicles.

Front Cell Infect Microbiol

January 2025

Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.

is a prevalent fungal pathogen responsible for infections in humans. As described recently, nanometer-sized extracellular vesicles (EVs) produced by play a crucial role in the pathogenesis of infection by facilitating host inflammatory responses and intercellular communication. This study investigates the functional properties of EVs released by biofilms formed by two strains-3147 (ATCC 10231) and SC5314-in eliciting host responses.

View Article and Find Full Text PDF

accelerates methicillin-resistant eradication by promoting migration and activation of neutrophils.

Front Pharmacol

January 2025

Laboratory of Pharmacology, Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China.

Background: (Lanata) is generally used to treat pustule infection in Inner Mongolia folk medicine and is called "the holy medicine for pustule." However, the pharmacological mechanism of Lanata in treating pustule infection is still unclear.

Aims: This study aimed to investigate the therapeutic effects of Lanata on skin infection and explore the underlying mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!