Solute accumulation in heat seedlings during cold acclimation: contribution to increased freezing tolerance.

Cryo Letters

United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan.

Published: February 2005

Accumulation of sugars, amino acids and glycinebetaine in leaf tissues during cold acclimation was simultaneously monitored and compared in three wheat cultivars that have different freezing tolerance. Freezing tolerance was the decreasing order of cv. Norstar (NO) > cv. Chihokukomugi (CH) > or = cv. Haruyutaka (HA). During cold acclimation, there was a significant increase in osmotic concentration in the three cultivars. The increase was largely due to the increase in soluble sugars and the extent of the increase was the greatest in NO and the least in HA. While there was a considerable increase in glucose, fructose and sucrose during the first week of cold acclimation, the increase in raffinose occurred only after the second week. The total sugar content was the order of NO > CH > HA after 4 weeks of cold acclimation. Proline increased in all cultivars after 1 week of cold acclimation but a prolonged cold acclimation resulted in different profiles: no further increase occurred in HA while an additional increase occurred in other two cultivars. In all three cultivars, a noticeable increase of glycinebetaine occurred only after the second week of cold acclimation with the amount being the order of NO > CH > HA. It is concluded that a substantial part of the increase in osmotic concentration during cold acclimation was due to the increase in sugars, but the extent of the contribution of each compatible solute is cultivar-specific and can be associated with the degree of the maximum freezing tolerance attainable.

Download full-text PDF

Source

Publication Analysis

Top Keywords

cold acclimation
36
freezing tolerance
16
acclimation increase
12
week cold
12
increase
11
cold
9
acclimation
9
increase osmotic
8
osmotic concentration
8
three cultivars
8

Similar Publications

The cold tolerance of the terrestrial slug, Ambigolimax valentianus.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol

January 2025

Department of Zoology, University of British Columbia, Vancouver, BC, Canada.

Terrestrial molluscs living in temperate and polar environments must contend with cold winter temperatures. However, the physiological mechanisms underlying the survival of terrestrial molluscs in cold environments and the strategies employed by them are poorly understood. Here we investigated the cold tolerance of Ambigolimax valentianus, an invasive, terrestrial slug that has established populations in Japan, Canada, and Europe.

View Article and Find Full Text PDF

Identification of a distal enhancer of Ucp1 essential for thermogenesis and mitochondrial function in brown fat.

Commun Biol

January 2025

State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China.

Uncoupling protein 1 (UCP1) is a crucial protein located in the mitochondrial inner membrane that mediates nonshivering thermogenesis. However, the molecular mechanisms by which enhancer-promoter chromatin interactions control Ucp1 transcriptional regulation in brown adipose tissue (BAT) are unclear. Here, we employed circularized chromosome conformation capture coupled with next-generation sequencing (4C-seq) to generate high-resolution chromatin interaction profiles of Ucp1 in interscapular brown adipose tissue (iBAT) and epididymal white adipose tissue (eWAT) and revealed marked changes in Ucp1 chromatin interaction between iBAT and eWAT.

View Article and Find Full Text PDF
Article Synopsis
  • Pugionium cornutum demonstrates strong tolerance to drought, salt, and disease, but the ways it copes with these stresses are not well understood.
  • In this study, researchers identified the PcNAC25 transcription factor gene, which is linked to stress response and enhances drought and salt tolerance when overexpressed in Arabidopsis.
  • The findings suggest that PcNAC25 acts as a positive regulator by boosting ROS-scavenging enzyme activity and promoting root growth, paving the way for more research on its regulatory mechanisms against environmental stresses.
View Article and Find Full Text PDF

In some peanut (Arachis hypogaea L.) producing regions, growth and photosynthesis-limiting low and high temperature extremes are common. Heat acclimation potential of photosynthesis and respiration is a coping mechanism that is species-dependent and should be further explored for peanut.

View Article and Find Full Text PDF

Oxygen is toxic in the cold in .

Front Physiol

December 2024

Roth Lab, Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.

Introduction: Temperature and oxygen are two factors that profoundly affect survival limits of animals; too much or too little of either is lethal. However, humans and other animals can exhibit exceptional survival when oxygen and temperature are simultaneously low. This research investigates the role of oxygen in the cold shock death of Caenorhabditis elegans.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!