Background: Current, invasive cerebral oxygenation monitors require either retrograde jugular venous bulb cannulation or intraparenchymal probe insertion. There is no accurate, noninvasive, continuous monitor of cerebral blood oxygenation.

Methods: The authors designed, built, and tested novel optoacoustic instrumentation that continuously measures blood oxygenation in the superior sagittal sinus (SSS) in vivo in 12 anesthetized sheep. In this technique, laser pulses generate acoustic signals, the amplitudes and slopes of which are proportional to oxyhemoglobin saturation in the SSS. Optoacoustic signals from the SSS measured through the scalp and cranium were compared with directly measured oxyhemoglobin saturation in blood withdrawn from the cannulated SSS.

Results: In the first experiments (feasibility), FIO2 changes produced rapid corresponding changes in optoacoustic signals and arterial oxygen saturation. In the second experiments (validation), the authors correlated oxyhemoglobin saturation in the SSS with optoacoustic signals and developed quantifying algorithms. In eight of nine validation experiments, the authors quantified optoacoustic signals by subtracting the temporal profile at low FIO2 (0.08-0.1) from profiles at higher FIO2 and integrating those signals in the range from 3 to 5 micros. In each validation experiment, optoacoustic signals showed tight temporal association and good linear correlation with measured oxyhemoglobin saturation (r2 0.75 to 0.99 for eight individual experiments).

Conclusions: The optoacoustic system detects signals induced in the SSS and optoacoustic signals from the SSS linearly correlate with oxyhemoglobin saturation. The data suggest that the optoacoustic technique merits clinical evaluation.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00000542-200501000-00014DOI Listing

Publication Analysis

Top Keywords

optoacoustic signals
24
oxyhemoglobin saturation
20
sss optoacoustic
12
optoacoustic
10
signals
9
cerebral blood
8
blood oxygenation
8
saturation sss
8
signals sss
8
measured oxyhemoglobin
8

Similar Publications

The most common transducers used to generate ultrasound in medical applications are based on short electrical pulses applied to piezoelectric transducers and capacitive micromachined ultrasound transducers. However, piezoelectric transducers have a limited frequency bandwidth, defined by their physical thickness, and capacitive micromachined ultrasound transducers have poor transmission efficiency. The high frequency cutoff limits the spatial resolution of ultrasonic images.

View Article and Find Full Text PDF

This short review discusses the recent developments in low-cost, high-resolution optoacoustic microscopy systems, integrating laser diodes for signal excitation, which are 20-40 times cheaper than the typically employed Q-switched nanosecond laser sources. The development of laser diode-based microscopes can substantially improve not only cost efficiency, but also multispectral capabilities, robustness, portability and overall imaging performance of the optoacoustic technique. To this end, we demonstrate relevant implementations in both time and frequency domain, highlighting their representative applications in biomedical research such as microvasculature imaging, oxygen saturation assessments, hybrid and multiview microscopy of model organisms and tissues and Doppler flow speed measurements.

View Article and Find Full Text PDF

Optoacoustic lenses for lateral sub-optical resolution elasticity imaging.

Photoacoustics

February 2025

Optics and Photonics Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD, Nottinghamshire, United Kingdom.

In this paper, we demonstrate for the first time the focusing of gigahertz coherent phonon pulses propagating in water using picosecond ultrasonics and Brillouin light scattering. We achieve this by using planar Fresnel zone plate and concave lenses with different focal lengths. Pump light illuminating the optoacoustic lens generates a focusing acoustic field, and Brillouin scattered probe light allows the acoustic field to be continuously monitored over time.

View Article and Find Full Text PDF

The recent advances in micromanufacturing have been pushing boundaries of the new generation of semiconductor devices, which, in the meantime, brings new challenges in the material and structural characterization - a key step to ensure the device quality through the micromanufacturing process. An ultrafast laser-enable optoacoustic characterization methodology is developed, targeting in situ calibration and delineation of the three-dimensional (3-D), nanoscopic interior features of opaque semiconductor chips. With the guidance of ultrafast electron-phonon coupling effect and velocity-perturbated optical interference, a femtosecond-laser pump-probe set-up based on Sagnac interferometer is configured to generate and acquire picosecond ultrasonic bulk waves (P-UBWs) traversing the microchips.

View Article and Find Full Text PDF

Optoacoustic (photoacoustic) imaging advances allow high-resolution optical imaging much deeper than optical microscopy. However, while label-free optoacoustics have already entered clinical application, biological imaging is in need of ubiquitous optoacoustic labels for use in ways that are similar to how fluorescent proteins propelled optical microscopy. We review photoswitching advances that shine a new light or, in analogy, 'bring a new sound' to biological optoacoustic imaging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!