Formation mechanism of 2,6-dimethyl-2,6-octadienes from thermal decomposition of linalyl beta-D-glucopyranoside.

Biosci Biotechnol Biochem

Analysis Research Department, Soda Aromatic Co. Ltd., 1573-4 Funakata, Noda-shi, Chiba 270-0233, Japan.

Published: December 2004

AI Article Synopsis

  • The study analyzed the thermal decomposition products of (+/-)-linalyl beta-D-glucoside using GC and GC/MS techniques.
  • Mild pyrolysis of the glucoside under vacuum produced 2,6-dimethyl-2,6-octadienes, which were identified and characterized through mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy.
  • A stable isotope labeling experiment provided direct evidence for a new reaction mechanism involving proton transfer during the decomposition process.

Article Abstract

Thermally decomposed products of (+/-)-linalyl beta-D-glucoside were analyzed by GC and GC/MS. 2,6-dimethyl-2,6-octadienes produced by mild pyrolysis of linalyl beta-D-glucopyranoside under a vacuum were detected and characterized by MS and NMR spectroscopy. This suggests that 2,6-dimethyl-2,6-octadienes are produced during thermal decomposition of the glucoside via proton transfer from the anomeric position to C-6 in the aglycon moiety. A stable isotope labeling experiment directly indicated the new reaction mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1271/bbb.68.2656DOI Listing

Publication Analysis

Top Keywords

thermal decomposition
8
linalyl beta-d-glucopyranoside
8
26-dimethyl-26-octadienes produced
8
formation mechanism
4
mechanism 26-dimethyl-26-octadienes
4
26-dimethyl-26-octadienes thermal
4
decomposition linalyl
4
beta-d-glucopyranoside thermally
4
thermally decomposed
4
decomposed products
4

Similar Publications

Zwitterionic polymers have garnered significant attention for their distinctive properties, such as biocompatibility, antifouling capabilities, and resistance to protein adsorption, making them promising candidates for a wide range of applications, including drug delivery, oil production inhibitors, and water purification membranes. This study reports the synthesis and characterization of zwitterionic monomers and polymers through the modification of linear, vinyl, and aromatic heterocyclic functional groups via reaction with 1,3-propanesultone. Four zwitterionic polymers with varying molecular structures-ranging from linear to five and six membered ring systems-were synthesized: poly(sulfobetaine methacrylamide) (pSBMAm), poly(sulfobetaine-1-vinylimidazole) (pSB1VI), poly(sulfobetaine-2-vinylpyridine) (pSB2VP), and poly(sulfobetaine-4-vinylpyridine) (pSB4VP).

View Article and Find Full Text PDF

Pt-CeO nanosponges (1 wt% Pt) with high surface area (113 m g), high pore volume (0.08 cm g) and small-sized Pt nanoparticles (1.8 ± 0.

View Article and Find Full Text PDF

Chrysanthemi Flos has been consumed as floral tea for centuries, but the effects of stir-frying on its chemical profile, sensory characteristics, and bioactivity remain unclear. This study used untargeted metabolomics, sensory assessment (E-eye, E-nose, E-tongue), and antioxidant activity evaluation to investigate compositional changes and their effects. In the metabolomics analysis, a total of 101 non-volatile and 306 volatile differential metabolites were identified.

View Article and Find Full Text PDF

Thermoformed, thermostable, waterproof and mechanically robust cellulose-based bioplastics enabled by dynamically reversible thia-Michael reaction.

Int J Biol Macromol

January 2025

The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China. Electronic address:

Cellulose is a renewable biodegradable polymer derived from abundant natural resources. Substituting petroleum-based polymers with cellulose-based bioplastics is an effective way to alleviate environmental issues like resource depletion and white pollution. However, challenges such as poor thermostability, difficulty in thermoforming and water sensitivity seriously hinder the fabrication and use of cellulose-based bioplastics.

View Article and Find Full Text PDF

Thermal decomposition synthesis of CuO on TiO NTs as promising photocatalysts for effective photoelectrocatalytic hydrogen evolution and pollutant removal.

Environ Res

January 2025

College of Civil Engineering, Hefei University of Technology, Hefei, 238000, China; Chinaland Solar Energy Co., Ltd., Hefei, 238000, China. Electronic address:

The preparation strategy is the important factor to obtain the effective photocatalyst, and the thermal decomposition could be used to prepare photocatalysts with high crystallinity and photoactivity. In this paper, thermal decomposition method was used to deposit CuO nanoparticles on TiO nanotube arrays (TiO NTs), and the TiO NTs/CuO exhibited remarkably high visible light absorption and photoelectrocatalytic performances toward dye degradation and Cr(VI) reduction. The potential degradation pathway and toxicities of rhodamine B (RhB) dyes and intermediates were investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!