We have previously reported the characterization of highly homologous two leucine-rich repeat (LRR)-receptor-like kinase (RLK) genes, RLK902 and RKL1, which showed 75% identity at the amino acid sequence level. To investigate the RLK902 and RKL1 mediated signal transduction pathways, we performed yeast two-hybrid screening using the kinase domains of RLK902 and RKL1 as baits. Three clones, Y-1, 2 and 3, were found to interact commonly with the kinase domain of RLK902 and RKL1 and not to interact with the kinase domain of BRI1, a member of LRR-RLKs. This result suggests that RLK902 and RKL1 may have common biochemical functions, especially in their downstream signal transduction. Furthermore, the detail analysis of their responsiveness to various conditions suggests their involvement in such stress conditions as mechanical wounding, treatment with salicylic acid, and pathogen infection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1271/bbb.68.2581 | DOI Listing |
Biosci Biotechnol Biochem
December 2004
Department of Applied Biological Chemistry, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
We have previously reported the characterization of highly homologous two leucine-rich repeat (LRR)-receptor-like kinase (RLK) genes, RLK902 and RKL1, which showed 75% identity at the amino acid sequence level. To investigate the RLK902 and RKL1 mediated signal transduction pathways, we performed yeast two-hybrid screening using the kinase domains of RLK902 and RKL1 as baits. Three clones, Y-1, 2 and 3, were found to interact commonly with the kinase domain of RLK902 and RKL1 and not to interact with the kinase domain of BRI1, a member of LRR-RLKs.
View Article and Find Full Text PDFBiosci Biotechnol Biochem
September 2004
Department of Applied Biological Chemistry, The University of Tokyo, Yayoi, Bunkyo-ku, Japan.
Receptor-like kinases (RLKs) constitute a large family of signal perception molecules. We characterized two highly homologous RLK genes, RLK902 and RKL1, in Arabidopsis. RLK902 and RKL1 showed a 75% amino acid sequence identity over their entire regions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!