Islet amyloid polypeptide (IAPP; amylin) is a peptide hormone that is cosecreted with insulin from beta-cells. Impaired processing of proIAPP, the IAPP precursor, has been implicated in islet amyloid formation in type 2 diabetes. We previously showed that proIAPP is processed to IAPP by the prohormone convertases PC1/3 and PC2 at its carboxyl (COOH) and amino (NH(2)) termini, respectively. In this study, we investigated the role of carboxypeptidase E (CPE) in the processing of proIAPP using mice lacking active CPE (Cpe(fat)/Cpe(fat)) and NIT-2 cells, a beta-cell line derived from their islets. Western blot analysis demonstrated that an approximately 6-kDa NH(2)-terminally unprocessed form of proIAPP was elevated approximately 86% in islets from Cpe(fat)/Cpe(fat) mice, compared with wild type. This increase was independent of the development of hyperglycemia (8 wk male) or obesity (18 wk female). Impaired proIAPP processing was associated with a decrease in PC2 (but not PC1/3) and both the 21- and 27-kDa forms of the PC2 chaperone protein 7B2, suggesting that PC2-mediated processing of proIAPP at its NH(2) terminus was impaired in the absence of CPE. Formation of COOH-terminally amidated (pro)IAPP was reduced approximately 75% in NIT-2, compared with NIT-1 beta-cells, supporting a direct role for CPE in maturation of IAPP by removal of its COOH-terminal dibasic residues, the step essential for IAPP amidation. We conclude that lack of CPE in islet beta-cells results in a marked decrease in processing of proIAPP at its NH(2) (but not COOH) terminus that is associated with attenuated levels of PC2 and (pro)7B2 and a great reduction in formation of mature amidated IAPP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/en.2004-1175 | DOI Listing |
Endocrinology
November 2023
Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
Altered prohormone processing, such as with proinsulin and pro-islet amyloid polypeptide (proIAPP), has been reported as an important feature of prediabetes and diabetes. Proinsulin processing includes removal of several C-terminal basic amino acids and is performed principally by the exopeptidase carboxypeptidase E (CPE), and mutations in CPE or other prohormone convertase enzymes (PC1/3 and PC2) result in hyperproinsulinemia. A comprehensive characterization of the forms and quantities of improperly processed insulin and other hormone products following Cpe deletion in pancreatic islets has yet to be attempted.
View Article and Find Full Text PDFNat Commun
August 2022
Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland.
Defective insulin processing is associated with obesity and diabetes. Prohormone convertase 1/3 (PC1/3) is an endopeptidase required for the processing of neurotransmitters and hormones. PC1/3 deficiency and genome-wide association studies relate PC1/3 with early onset obesity.
View Article and Find Full Text PDFACS Chem Neurosci
July 2022
Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States.
Substoichiometric aggregation inhibition of human islet amyloid polypeptide (IAPP), the hallmark of type 2 diabetes impacting millions of people, is crucial for developing clinic therapies, yet it remains challenging given that many candidate inhibitors require high doses. Intriguingly, insulin, the key regulatory polypeptide on blood glucose levels that are cosynthesized, costored, and cosecreted with IAPP by pancreatic β cells, has been identified as a potent inhibitor that can suppress IAPP amyloid aggregation at substoichiometric concentrations. Here, we computationally investigated the molecular mechanisms of the substoichiometric inhibition of insulin against the aggregation of IAPP and the incompletely processed IAPP (proIAPP) using discrete molecular dynamics simulations.
View Article and Find Full Text PDFAm J Transplant
August 2022
Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada.
Pancreatic islet transplantation has therapeutic potential in type 1 diabetes and is also an established therapy in chronic pancreatitis. However, the long-term transplant outcomes are modest. Identifying indicators of graft function will aid the preservation of transplanted islets and glycemic control.
View Article and Find Full Text PDFEndocrinology
June 2022
Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
Up to 6% of diabetes has a monogenic cause including mutations in the insulin gene, and patients are candidates for a gene therapy. Using a mouse model of permanent neonatal diabetes, we assessed the efficacy of an adeno-associated virus (AAV)-mediated gene therapy. We used AAVs with a rat insulin 1 promoter (Ins1) regulating a human insulin gene (INS; AAV Ins1-INS) or native mouse insulin 1 (Ins1; AAV Ins-Ins1) to deliver an insulin gene to β-cells of constitutive insulin null mice (Ins1-/-Ins2-/-) and adult inducible insulin-deficient mice [Ins1-/-Ins2f/f PdxCreER and Ins1-/-Ins2f/f mice administered AAV Ins1-Cre)].
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!