Modeling of benzocaine analog interactions with the D4S6 segment of NaV4.1 voltage-gated sodium channels.

Biophys Chem

Department of Biological Sciences, Murray State University, 334 Blackburn Science Building, Murray, KY 42071-3346, USA.

Published: January 2005

Local anesthetics (LAs) are compounds that inhibit the propagation of action potentials in excitable tissues by blocking voltage-gated Na+ channels. Mutagenesis studies have demonstrated that several amino acid residues are important sites of LA interaction with the channel, but these studies provide little information regarding the molecular forces that govern drug-binding interactions, including the binding orientation of drugs. We used computational methods to construct a simple model of benzocaine analog binding with the D4S6 segment of rat skeletal muscle (NaV4.1) sodium channels. The model revealed that four hydrophobic residues form a binding cavity for neutral LAs, and docking studies indicated that increasing hydrophobicity among the benzocaine analogs allowed a better fit within the binding cavity. The similarities between our simple model and published experimental data suggested that modeling of LA interactions with sodium channels, along with experimental approaches, could further enhance our understanding of LA interactions with sodium channels.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bpc.2004.07.033DOI Listing

Publication Analysis

Top Keywords

sodium channels
16
benzocaine analog
8
d4s6 segment
8
simple model
8
binding cavity
8
interactions sodium
8
channels
5
modeling benzocaine
4
interactions
4
analog interactions
4

Similar Publications

Iron-based phosphate NaFe(PO)(PO) (NFPP) has been regarded as the most promising cathode for sodium-ion batteries (SIBs) thanks to its cost-effectiveness and eco-friendliness. However, it is in a predicament from the intrinsic low ionic/electronic conductivity, becoming a great challenge for its practical application. Herein, the significant roles of the low-energy 3p-orbital and transition metal vacancies are emphasized in facilitating charge rearrangement and reconstructing ion-diffusion channels, from the perspectives of crystallography and electron interaction for the first time, and the modification mechanism is fully explored by various characterizations and theoretical calculations.

View Article and Find Full Text PDF

A multifunctional quasi-solid-state polymer electrolyte with highly selective ion highways for practical zinc ion batteries.

Nat Commun

January 2025

State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.

The uncontrolled dendrite growth and detrimental parasitic reactions of Zn anodes currently impede the large-scale implementation of aqueous zinc ion batteries. Here, we design a versatile quasi-solid-state polymer electrolyte with highly selective ion transport channels via molecular crosslinking of sodium polyacrylate, lithium magnesium silicate and cellulose nanofiber. The abundant negatively charged ionic channels modulate Zn desolvation process and facilitate ion transport.

View Article and Find Full Text PDF

Protein/protein interactions (PPI) play crucial roles in neuronal functions. Yet, their potential as drug targets for brain disorders remains underexplored. The fibroblast growth factor 14 (FGF14)/voltage-gated Na channel 1.

View Article and Find Full Text PDF

NaFe(PO)(PO) (NFPP) is currently receiving a lot of attention, as it combines the advantages of NaFePO and NaFePO in terms of cost, energy density, and cycle stability. However, the issues of intrinsic poor electronic conductivity and difficult high-purity preparation may impede its practical application. Herein, the pivotal role of Cu doping in strengthening the polyanion structure and improving its electrochemical properties is comprehensively investigated.

View Article and Find Full Text PDF
Article Synopsis
  • Ion channels play a crucial role in regulating ion flow across cell membranes and have become a key focus in cancer therapy due to their influence on cancer cell behaviors like proliferation and drug resistance.
  • Dysregulated ion channels, such as abnormal sodium and potassium channels, are linked to chemotherapy sensitivity, while calcium channels contribute to resistance in specific lung cancer types, and ferrous ions can make breast cancer cells more susceptible to treatment.
  • The review highlights the potential of using ion channel blockers or modulators to improve the effectiveness of anticancer drugs and presents a hopeful strategy for addressing drug resistance in cancer treatments.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!