A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Identification of novel inhibitors of bacterial translation elongation factors. | LitMetric

Bacterial elongation factor Tu (EF-Tu) and EF-Ts are interacting proteins involved in polypeptide chain elongation in protein biosynthesis. A novel scintillation proximity assay for the detection of inhibitors of EF-Tu and EF-Ts, as well as the interaction between them, was developed and used in a high-throughput screen of a chemical library. Several compounds from a variety of chemical series with inhibitory properties were identified, including certain indole dipeptides, benzimidazole amidines, 2-arylbenzimidazoles, N-substituted imidazoles, and N-substituted guanidines. The in vitro activities of these compounds were confirmed in a coupled bacterial transcription-translation assay. Several indole dipeptides were identified as inhibitors of bacterial translation, with compound 2 exhibiting a 50% inhibitory concentration of 14 microM and an MIC for S. aureus ATCC 29213 of 5.6 microg/ml. Structure-activity relationship studies around the dipeptidic indoles generated additional analogs with low micromolar MICs for both gram-negative and gram-positive bacteria. To assess the specificity of antibacterial action, these compounds were evaluated in a metabolic labeling assay with Staphylococcus aureus. Inhibition of translation, as well as limited effects on other macromolecular pathways for some of the analogs studied, indicated a possible contribution from a non-target-based antibacterial mechanism of action.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC538871PMC
http://dx.doi.org/10.1128/AAC.49.1.131-136.2005DOI Listing

Publication Analysis

Top Keywords

inhibitors bacterial
8
bacterial translation
8
ef-tu ef-ts
8
indole dipeptides
8
identification novel
4
novel inhibitors
4
bacterial
4
translation elongation
4
elongation factors
4
factors bacterial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!