Intraflagellar transport (IFT) is a bidirectional process required for assembly and maintenance of cilia and flagella. Kinesin-2 is the anterograde IFT motor, and Dhc1b/Dhc2 drives retrograde IFT. To understand how either motor interacts with the IFT particle or how their activities might be coordinated, we characterized a ts mutation in the Chlamydomonas gene encoding KAP, the nonmotor subunit of Kinesin-2. The fla3-1 mutation is an amino acid substitution in a conserved C-terminal domain. fla3-1 strains assemble flagella at 21 degrees C, but cannot maintain them at 33 degrees C. Although the Kinesin-2 complex is present at both 21 and 33 degrees C, the fla3-1 Kinesin-2 complex is not efficiently targeted to or retained in the basal body region or flagella. Video-enhanced DIC microscopy of fla3-1 cells shows that the frequency of anterograde IFT particles is significantly reduced. Anterograde particles move at near wild-type velocities, but appear larger and pause more frequently in fla3-1. Transformation with an epitope-tagged KAP gene rescues all of the fla3-1 defects and results in preferential incorporation of tagged KAP complexes into flagella. KAP is therefore required for the localization of Kinesin-2 at the site of flagellar assembly and the efficient transport of anterograde IFT particles within flagella.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC551497PMC
http://dx.doi.org/10.1091/mbc.e04-10-0931DOI Listing

Publication Analysis

Top Keywords

anterograde ift
12
required localization
8
localization kinesin-2
8
kinesin-2 site
8
site flagellar
8
flagellar assembly
8
intraflagellar transport
8
kinesin-2 complex
8
ift particles
8
kinesin-2
6

Similar Publications

The intraflagellar transport cycle.

Nat Rev Mol Cell Biol

November 2024

Human Technopole, Milan, Italy.

Primary and motile cilia are eukaryotic organelles that perform crucial roles in cellular signalling and motility. Intraflagellar transport (IFT) contributes to the formation of the highly specialized ciliary proteome by active and selective transport of soluble and membrane proteins into and out of cilia. IFT is performed by the IFT-A and IFT-B protein complexes, which together link cargoes to the microtubule motors kinesin and dynein.

View Article and Find Full Text PDF

Calibrated transcriptional outputs in cellular signaling require fine regulation of transcription factor activity. In vertebrate Hedgehog (Hh) signaling, the precise output of the final effectors, the GLI (Glioma-associated-oncogene) transcription factors, depends on the primary cilium. In particular, the formation of the activator form of GLI upon pathway initiation requires its concentration at the distal cilium tip.

View Article and Find Full Text PDF
Article Synopsis
  • - Mutations in cilia genes are linked to ciliopathies, affecting cell functions such as development and survival, particularly in zebrafish lateral line hair cells.
  • - Disruption of cilia due to mutations in IFT genes (ift88 and dync2h1) led to increased hair cell apoptosis and decreased mitochondrial function, suggesting a link between mitochondrial dysfunction and cell death.
  • - While these mutations resulted in reduced hair cell regeneration and survival, they did not significantly alter the number of support cells or their proliferation during hair cell development.
View Article and Find Full Text PDF

Bidirectional transport in cilia is carried out by polymers of the IFTA and IFTB protein complexes, called anterograde and retrograde intraflagellar transport (IFT) trains. Anterograde trains deliver cargoes from the cell to the cilium tip, then convert into retrograde trains for cargo export. We set out to understand how the IFT complexes can perform these two directly opposing roles before and after conversion.

View Article and Find Full Text PDF

Quantitative proteomics reveals insights into the assembly of IFT trains and ciliary assembly.

J Cell Sci

July 2024

MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.

Intraflagellar transport (IFT) is required for ciliary assembly. The IFT machinery comprises the IFT motors kinesin-2 and IFT dynein plus IFT-A and IFT-B complexes, which assemble into IFT trains in cilia. To gain mechanistic understanding of IFT and ciliary assembly, here, we performed an absolute quantification of IFT machinery in Chlamydomonas reinhardtii cilium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!