The probing of living cells in different colors over extended periods of time can be used to see the complicated processes that take place during carcinogenesis or heat stress, for example. Since most therapeutic laser tissue interactions are based on thermal effects a detailed characterization of thermal tissue damages in the cellular and sub-cellular levels is important. In order to study such microdosimetry laser-induced fluorescences of Quantum dots provide a suitable approach. Streptavidin conjugated Qdot 605 (Quantum Dot Corp., USA) were used in combination with the concanavalin A-biotin labeling system (Molecular Probes, NL) to observe membrane associated thermal lesions. Fluorescent Qdot conjugates are a promising alternative to organic dyes. The extinction coefficient of Qdot 605 streptavidin conjugate is 650,000 M(-1) cm(-1) at 600 nm. Red fluorescent Qdots 605 were selected because autofluorescence of cells in the red spectral range is not relevant. Fluorescence detection was performed with a confocal laser scan microscope LSM410 (Carl Zeiss, Germany). Breast cancer cells were used in the thermal stressing experiments performed at 40 degrees C, 42 degrees C, 45 degrees C, 50 degrees C or 56 degrees C for 30 min, each. In this methodical approach Qdot mediated labeling of heat stressed cells were demonstrated to show alterations of plasma membrane organizations and integrities, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1023/b:jofl.0000024555.60815.21 | DOI Listing |
J Med Internet Res
January 2025
Cancer Screening, American Cancer Society, Atlanta, GA, United States.
Background: The online nature of decision aids (DAs) and related e-tools supporting women's decision-making regarding breast cancer screening (BCS) through mammography may facilitate broader access, making them a valuable addition to BCS programs.
Objective: This systematic review and meta-analysis aims to evaluate the scientific evidence on the impacts of these e-tools and to provide a comprehensive assessment of the factors associated with their increased utility and efficacy.
Methods: We followed the 2020 PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines and conducted a search of MEDLINE, PsycINFO, Embase, CINAHL, and Web of Science databases from August 2010 to April 2023.
Codas
January 2025
Programa de Pós-Graduação em Fonoaudiologia, Universidade Estadual Paulista "Júlio de Mesquita Filho" - UNESP - Marília (SP), Brasil.
Purpose: To investigate whether there is a difference in the classification of speech hypernasality by inexperienced listeners using different ordinal scales; to verify the agreement of the listeners in the analyses when using these scales; and to verify whether the order in which the scales are presented influences the results.
Methods: Twenty Speech-Language Pathology students classified the degrees of hypernasality of 40 (oral) samples from patients with cleft lip and palate. Ten performed the classifications using a 4-point scale (absent, mild, moderate, and severe) and, after two weeks, using a 3-point scale (absent, slightly hypernasal, and very hypernasal).
Sci Adv
January 2025
State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China.
Hong-Ou-Mandel (HOM) interference is the foundation of quantum optics to test the degree of indistinguishability of two incoming photons, playing a key role in quantum communication, sensing, and photonic quantum computing. Realizing high-visibility HOM interference with massively parallel optical channels is challenging due to the lack of available natural optical references for aligning independent arrayed laser pairs. Here, we demonstrate 50 parallel comb-teeth pairs of continuous-wave weak coherent photons HOM interference using two independently frequency post-aligned soliton microcombs (SMCs), achieving an average fringe visibility over 46%.
View Article and Find Full Text PDFSci Adv
January 2025
Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan.
J Trauma Nurs
January 2025
Author Affiliations: Department of Management and Organization, Bayburt University, Bayburt, Turkey (Dr Koroglu Kaba); Akdağmadeni School of Health, Yozgat Bozok University, Yozgat, Turkey (Dr Bal); and Nursing Department, Faculty of Health Sciences, Karadeniz Technical University, Trabzon, Turkey (Dr Ozturk).
Background: Nurse managers play a critical role in disaster response and management; yet research on their experiences in earthquakes remains limited.
Objective: This study aimed to explore the experiences of nurse managers in the Kahramanmaras, Turkey, earthquakes.
Methods: A phenomenological approach was used to guide this study, exploring the lived experiences of nurse managers who worked during the 2023 earthquakes in Kahramanmaras, Turkey.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!