Leptosphaeria maculans causes phoma stem canker, the most serious disease of oilseed rape world-wide. Sexual recombination is important in the pathogen life cycle and increases the risk of plant resistance genes being overcome rapidly. Thus, there is a need to develop easy-to-use molecular markers suitable for large-scale population genetic studies. The minisatellite MinLm1, showing six alleles in natural populations, has previously been used as a marker to survey populations. Here, we report the characterization of five new minisatellites (MinLm2-MinLm6), of which four were identified by a systematic search for tandemly repeated polymorphic regions in BAC-end sequencing data from L. maculans. Of 782 BAC-end sequences analysed, 43 possessed putative minisatellite-type repeats and four of these (MinLm3-MinLm6) displayed both consistent PCR amplification and size polymorphism in a collection of L. maculans isolates of diverse origins. Cloning and sequencing of each allele confirmed that polymorphism was due to variation in the repeat number of a core motif ranging from 11 bp (MinLm3) to 51 bp (MinLm4). The number of alleles found for each minisatellite ranged from three (MinLm4) to nine (MinLm2), with eight, five and six for MinLm3, MinLm5 and MinLm6, respectively. MinLm2-MinLm6 are all single locus markers specific to L. maculans and share some common features, such as conservation of core motifs and incomplete direct repeats in the flanking regions. To our knowledge, L. maculans is the first fungal species for which six polymorphic single locus minisatellite markers have been reported.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00294-004-0539-zDOI Listing

Publication Analysis

Top Keywords

leptosphaeria maculans
8
single locus
8
maculans
6
identification characterization
4
characterization polymorphic
4
polymorphic minisatellites
4
minisatellites phytopathogenic
4
phytopathogenic ascomycete
4
ascomycete leptosphaeria
4
maculans leptosphaeria
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!