Background: Emerging data suggest a gender dimorphism in resistance and susceptibility to distant organ injury after mechanical and thermal trauma. The aim of this study was to determine the role that testosterone and estradiol play in modulating resistance or susceptibility to distant organ injury, and whether their effects were associated with differences in the production of nitric oxide.
Methods: Adult male, female, castrated male, and ovariectomized female Sprague-Dawley rats were given intraperitoneal pentobarbital sodium anesthesia and subjected to trauma/sham shock or trauma/hemorrhagic shock (T/HS). A second set of animals were subjected to a 40% total body surface area, third-degree burn or sham burn. At 3 hours after resuscitation, plasma levels of nitrite/nitrate were measured, and the extent of lung injury (permeability to Evans Blue dye and neutrophil sequestration by myeloperoxidase) and intestinal injury (morphology) were determined.
Results: Proestrus females showed resistance to lung and gut injury after both T/HS and burns, and had low levels of nitrite/nitrate production. This resistance to injury was abrogated by ovariectomy with an associated increase in nitric oxide production. Males showed increased lung and gut injury after both T/HS and burns associated with increased production of nitrite/nitrate. Castration decreased susceptibility to both lung and gut injury, and decreased production of nitrite/nitrate. A correlation was noted between intestinal and lung injury, and both intestinal and lung injury correlated with plasma nitrite/nitrate levels.
Conclusions: Male sex hormones potentiate, while female hormones reduce T/HS and burn-induced lung and gut injury. Production of nitric oxide is associated with increased lung and gut injury after T/HS and burns.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.surg.2004.04.037 | DOI Listing |
Mucosal Immunol
January 2025
CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 101408, China. Electronic address:
Mucosal tissues, including those in the respiratory and gastrointestinal tracts, are critical barrier surfaces for pathogen invasion. Infections at these sites not only trigger local immune response, but also recruit immune cells from other tissues. Emerging evidence in mouse models and human samples indicate that the immune crosstalk between lung and gut critically impact and determine the course of respiratory disease.
View Article and Find Full Text PDFCell Rep Med
December 2024
Capital Institute of Pediatrics, Beijing 100020, China. Electronic address:
We have previously reported that high-alcohol-producing Klebsiella pneumoniae (HiAlc Kpn) in the gut can cause endo-alcoholic fatty liver disease. Here, we discover that 91.2% of Kpn isolates from pulmonary disease samples also produce excess ethanol, which may be associated with respiratory disease severity.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin 130021, PR China. Electronic address:
Exposure of PM2.5 can cause different degrees of lung injury, which is referred with inflammatory response. Some evidences showed that low-dose radiation (LDR) induces hormesis in immune, however, it is unknown if LDR ameliorates the PM2.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA.
Background: A recent study with large samples of electronic health records (EHRs) suggested Shingles vaccination may reduce dementia risk. Although further investigation is needed to pinpoint the underlying mechanism, such observation adds to the evidence for a connection between peripheral and central nervous system immunity. Since microglia is the major cell type implicated in AD genetics, here, we set out to probe the shared biology between microglia in human brain and macrophages in peripheral system, through the common genes that express in both cell types.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States.
Introduction: A subtype of human mast cells (MCs) found in the skin and to a lesser extent in the lung and gut express a novel G protein-coupled receptor (GPCR) known as Mas-related GPCR-X2 (MRGPRX2, mouse counterpart MrgprB2). In addition to drug-induced pseudoallergy and cutaneous disorders, MrgprB2 contributes to ulcerative colitis, IgE-mediated lung inflammation and systemic anaphylaxis. Interestingly, most agonists activate MRGPRX2 with higher potency than MrgprB2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!