Low sodium diet inhibits the local counter-regulator effect of angiotensin-(1-7) on angiotensin II.

J Hypertens

Department of Clinical Pharmacology, Groningen University Institute for Drug Exploration (GUIDE), University of Groningen, Groningen, The Netherlands.

Published: December 2004

Objective: The heptapeptide angiotensin-(1-7) [Ang-(1-7)] has been identified as a versatile, endogenous inhibitor of the renin-angiotensin system (RAS). As the therapeutic response to exogenous RAS inhibitors, such as AT1 receptor antagonists, is altered by changes in salt intake, we investigated the effect of a low, normal and high sodium diet on the antagonism of Ang II by Ang-(1-7). The role of angiotensin receptor subtypes and the endothelium was assessed.

Methods: Male Wistar rats received a normal sodium (0.3% NaCl), high sodium (2.0% NaCl) or low sodium (0.05% NaCl) diet for 10 days. Vascular responses were assessed ex vivo in thoracic aortic rings in the presence of the nitric oxide (NO) inhibitor N-monomethyl-l-arginine (l-NMMA) to avoid aspecific vasodilator effects of Ang-(1-7).

Results: After a normal or high salt diet, Ang-(1-7) significantly decreased maximal Ang II-induced vascular constrictions by 40-50%. After a low salt diet this non-competitive antagonism disappeared. The AT2 receptor antagonist PD 123319 and the Ang-(1-7) receptor antagonist A779 attenuated the effect of Ang-(1-7) found in rats fed with a normal or high sodium diet. Further, removal of endothelium and pretreatment with the prostaglandin synthesis inhibitor indomethacin (10 mol/l) abolished the non-competitive antagonism by Ang-(1-7).

Conclusion: Ang-(1-7) elicits a specific, endothelium-dependent and non-competitive antagonism of Ang II, which involves AT2 and Ang-(1-7) receptors but is independent of NO production. This non-competitive antagonism of Ang-(1-7) is abolished by a low sodium intake in normotensive rats, suggesting that it serves as a negative feedback towards Ang II in response to an altered sodium intake.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00004872-200412000-00018DOI Listing

Publication Analysis

Top Keywords

non-competitive antagonism
16
low sodium
12
sodium diet
12
normal high
12
high sodium
12
antagonism ang
8
salt diet
8
receptor antagonist
8
sodium intake
8
sodium
7

Similar Publications

Intranasal Administration of the Combination of Dextro-Ketamine and Dexmedetomidine for Treatment of Diabetic Neuropathic Pain in Rats.

J Pain Res

January 2025

Programa de Pós-Graduação em Medicina (Cirurgia Geral), Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.

Introduction: Diabetes mellitus (DM) has become a public health problem, which is associated with high morbidity and mortality, due to the chronic complications, such as diabetic neuropathy. Current recommendations for the treatment of neuropathic pain achieve a reduction of 30% in only 30% of cases. Therefore, it is necessary to identify new therapeutic approaches to improve the quality of life of diabetic patients.

View Article and Find Full Text PDF

Olanzapine, an atypical antipsychotic, is widely used in the treatment of schizophrenia and bipolar disorder due to its modulation of dopamine and serotonin receptor systems. While its primary action involves antagonism of dopamine D2 and serotonin 5-HT (5-hydroxytryptamine)A receptors, recent evidence suggests that olanzapine also inhibits 5-HT receptors, which are ligand-gated ion channels involved in synaptic transmission in central and peripheral nervous systems. The present study aimed to investigate the action of olanzapine on 5-HT receptor-mediated currents using whole-cell voltage-clamp recordings in NCB-20 neuroblastoma cells.

View Article and Find Full Text PDF

Buprenorphine is an FDA approved drug for the treatment of opioid use disorder and is a long-lasting, low efficacy (partial) agonist of the μ opioid receptor. As a partial agonist, buprenorphine can act as either an agonist or an antagonist depending on the efficiency of the cellular signaling system. Here we investigated the antagonist properties of buprenorphine using a genetically-encoded biosensor to monitor cAMP levels in real time in HEK293 cells expressing a relatively low density of the human μ receptor.

View Article and Find Full Text PDF

Background/objectives: Johnsongrass () is an erect tetraploid, perennial, C4 grass weed species categorized among the world's most noxious weeds due to its high competitive ability against crops and the increased number of field-evolved herbicide-resistant populations. The aim of the present study was to assess the growth rate and performance of resistant (R) johnsongrass genotypes hosting Trp574Leu target-site cross-resistance at gene, inhibiting various herbicides, compared to susceptible (S) conspecific weeds, in the absence and presence of corn or sunflower antagonism.

Methods: The aboveground biomass, tiller, and rhizome production ability of one S and one R johnsongrass population with a Trp574-Leu substitution conferring cross-resistance to ALS-inhibiting herbicides were compared under non-competitive conditions.

View Article and Find Full Text PDF

Molecular Interactions of the Plant Steroid Hormone Epibrassinolide on Human Drug-Sensitive and Drug-Resistant Small-Cell Lung Carcinoma Cells.

Cancers (Basel)

November 2024

Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA.

Small-cell lung cancer (SCLC) has a poor prognosis because it is often diagnosed after it has spread and develops multi-drug resistance. Epibrassinolide (EB) is a plant steroid hormone with widespread distribution and physiological effects. In plants, EB-activated gene expression occurs via a GSK-mediated signaling pathway, similar to β-catenin signaling in animal cells that is elevated in cancer cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!