A C-terminal translocation signal required for Dot/Icm-dependent delivery of the Legionella RalF protein to host cells.

Proc Natl Acad Sci U S A

Section of Microbial Pathogenesis, Yale University School of Medicine, Boyer Center for Molecular Medicine, Room 354b, 295 Congress Avenue, New Haven, CT 06511, USA.

Published: January 2005

The Legionella pneumophila Dot/Icm system is a type IV secretion apparatus that transfers bacterial proteins into eukaryotic host cells. The RalF protein is a substrate engaged and translocated into host cells by the Dot/Icm system. In this study, the mechanism of Dot/Icm-mediated translocation of RalF has been investigated. It was determined that RalF translocation into host cells occurs before bacterial internalization. Sequences essential for RalF translocation were located at the C terminus of the RalF protein. A fusion protein consisting of a 20-aa C-terminal RalF peptide appended to the calmodulin-dependent adenylate cyclase domain of the Bordetella pertussis adenylate cyclase protein was translocated into host cells by the Dot/Icm system. A leucine (L372) residue at the -3 position in relation to the RalF C terminus was critical for translocation. Consistent with RalF L372 playing an important role in substrate recognition by the Dot/Icm system, most other Dot/Icm substrates were found to have amino acid residues with similar physical properties at their -3 or -4 C-terminal positions. These data demonstrate that the Dot/Icm system can transfer bacterial proteins that modulate host cellular functions before uptake and indicate that substrate recognition involves a C-terminal translocation signal. Thus, Legionella has the ability to engage synthesized substrate proteins and transfer them into host cells on contact, enabling Legionella to rapidly alter transport of the vacuole in which it resides.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC545534PMC
http://dx.doi.org/10.1073/pnas.0406239101DOI Listing

Publication Analysis

Top Keywords

host cells
24
dot/icm system
20
ralf protein
12
ralf
9
c-terminal translocation
8
translocation signal
8
bacterial proteins
8
translocated host
8
cells dot/icm
8
ralf translocation
8

Similar Publications

The pathway to resolve dimeric forms distinguishes plasmids from megaplasmids in Enterobacteriaceae.

Nucleic Acids Res

January 2025

Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, 165 Rue Marianne Grunberg-Manago, campus Paul Sabatier, 118, route de Narbonne, 31062, Toulouse Cedex, France.

Bacterial genomes contain a plethora of secondary replicons of divergent size. Circular replicons must carry a system for resolving dimeric forms, resulting from recombination between sister copies. These systems use site-specific recombinases.

View Article and Find Full Text PDF

The size of viral genomes is limited, thus the majority of encoded proteins possess multiple functions. The main function of tobamoviral movement protein (MP) is to perform plasmodesmata gating and mediate intercellular transport of the viral RNA. MP is a remarkable example of a protein that, in addition to the initially discovered and most obvious function, carries out numerous activities that are important both for the manifestation of its key function and for successful and productive infection in general.

View Article and Find Full Text PDF

Monkeypox (MPOX) is a zoonotic viral disease caused by the Monkeypox virus (MPXV), which has become the most significant public health threat within the genus since the eradication of the Variola virus (VARV). Despite the extensive attention MPXV has garnered, little is known about its clinical manifestations in humans. In this study, a high-throughput RNA sequencing (RNA-seq) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach was employed to investigate the transcriptional and metabolic responses of HEK293T cells to the MPXV A5L protein.

View Article and Find Full Text PDF

cyclic lipopeptides (CLP), part of the three main families-surfactins, iturins, and fengycins-are secondary metabolites with a unique chemical structure that includes both peptide and lipid components. Being amphiphilic compounds, CLPs exhibit antimicrobial activity in vitro, damaging the membranes of microorganisms. However, the concentrations of CLPs used in vitro are difficult to achieve in natural conditions.

View Article and Find Full Text PDF

The Impact of Cell-Intrinsic STAT6 Protein on Donor T Cell-Mediated Graft-Versus-Tumor Effect.

Int J Mol Sci

December 2024

Department of Internal Medicine, Division of Gastroenterology and Hepatology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.

Bone marrow transplantation (BMT) is mainly performed to restore an anti-tumor immune response, called the graft-versus-tumor (GVT) effect, against leukemia, myeloma and lymphoma. This GVT reactivity is driven by donor T cells, and it can also cause lethal graft-versus-host disease (GVHD). We previously demonstrated that the colonization of mice with helminths preserves the GVT response while suppressing GVHD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!