The minimization of a genome is necessary to identify experimentally the minimal gene set that contains only those genes that are essential and sufficient to sustain a functioning cell. Recent developments in genetic techniques have made it possible to generate bacteria with a markedly reduced genome. We developed a simple system for formation of markerless chromosomal deletions, and constructed and characterized a series of large-scale chromosomal deletion mutants of Escherichia coli that lack between 2.4 and 29.7% of the parental chromosome. Combining deletion mutations changes cell length and width, and the mutant cells with larger deletions were even longer and wider than the parental cells. The nucleoid organization of the mutants is also changed: the nucleoids occur as multiple small nucleoids and are localized peripherally near the envelope. Inhibition of translation causes them to condense into one or two packed nucleoids, suggesting that the coupling of transcription and translation of membrane proteins peripherally localizes chromosomes. Because these phenotypes are similar to those of spherical cells, those may be a consequence of the morphological change. Based on the nucleoid localization observed with these mutants, we discuss the cellular nucleoid dynamics.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2958.2004.04386.xDOI Listing

Publication Analysis

Top Keywords

nucleoid organization
8
escherichia coli
8
reduced genome
8
cell size
4
nucleoid
4
size nucleoid
4
organization engineered
4
engineered escherichia
4
cells
4
coli cells
4

Similar Publications

The crowded bacterial cytoplasm is composed of biomolecules that span several orders of magnitude in size and electrical charge. This complexity has been proposed as the source of the rich spatial organization and apparent anomalous diffusion of intracellular components, although this has not been tested directly. Here, we use biplane microscopy to track the 3D motion of self-assembled bacterial genetically encoded multimeric nanoparticles (bGEMs) with tunable size (20 to 50 nm) and charge (-3,240 to +2,700 e) in live cells.

View Article and Find Full Text PDF

SMC translocation is unaffected by an excess of nucleoid associated proteins in vivo.

Sci Rep

January 2025

Department of Biology, Indiana University, 1001 E 3rd Street, Bloomington, IN 47405, USA.

Genome organization is important for DNA replication, gene expression, and chromosome segregation. In bacteria, two large families of proteins, nucleoid-associated proteins (NAPs) and SMC complexes, play important roles in organizing the genome. NAPs are highly abundant DNA-binding proteins that can bend, wrap, bridge, and compact DNA, while SMC complexes load onto the chromosome, translocate on the DNA, and extrude DNA loops.

View Article and Find Full Text PDF

Phenol and its chlorinated derivatives are introduced into the environment with wastewater effluents from various industries, becoming toxic pollutants. Phenol-degrading bacteria are important objects of research; among them, representatives of the genus are often highlighted as promising. Strain 7Ba was isolated by enrichment culture.

View Article and Find Full Text PDF

Spatial chromosome organization and adaptation of the radiation-resistant extremophile Deinococcus radiodurans.

J Biol Chem

December 2024

Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China. Electronic address:

Article Synopsis
  • Deinococcus radiodurans is a hardy microorganism known for its ability to survive extreme radiation and chemical damage, largely due to its advanced DNA repair skills.
  • Researchers used chromosome conformation capture (3C) technology to analyze the 3D structure of its genome and how UV irradiation affects chromosome organization.
  • The study found that UV exposure leads to reduced chromosome interactions and larger chromosomal domains, revealing insights into how a protein called DrEbfC regulates gene expression and helps the organism cope with environmental stresses.
View Article and Find Full Text PDF

OPA1 and disease-causing mutants perturb mitochondrial nucleoid distribution.

Cell Death Dis

November 2024

Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.

Optic atrophy protein 1 (OPA1) mediates inner mitochondrial membrane (IMM) fusion and cristae organization. Mutations in OPA1 cause autosomal dominant optic atrophy (ADOA), a leading cause of blindness. Cells from ADOA patients show impaired mitochondrial fusion, cristae structure, bioenergetic function, and mitochondrial DNA (mtDNA) integrity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!