Ion mobility measurements have been performed for protonated polyalanine peptides (A10 + H+, A15 + H+, A20 + H+, A25 + H+, and A15NH2 + H+) as a function of temperature using a new high-temperature drift tube. Peaks due to helices and globules were found at room temperature for all peptides, except for A10 + H+ (where only the globule is present). As the temperature is increased, the helix and globule peaks broaden and merge to give a single narrow peak. This indicates that the two conformations interconvert rapidly at elevated temperatures. The positions of the merged peaks show that A15 + H+ and A15NH2 + H+ spend most of their time as globules when heated, while A20 + H+ and A25 + H+ spend most of their time as helices. The helix/globule transitions are almost certainly accompanied by intramolecular proton transfer, and so, these results suggest that the proton becomes mobile (able to migrate freely along the backbone) at around 450 K. The peptides dissociate as the temperature is increased further to give predominantly the bn(+), b(n-1)(+), b(n-2)(+), ... series of fragment ions. There is a correlation between the ease of fragmentation and the time spent in the helical conformation for the An + H+ peptides. Helix formation promotes dissociation because it pools the proton at the C-terminus where it is required for dissociation to give the observed products. In addition to the helix and globule, an antiparallel helical dimer is observed for the larger peptides. The dimer can be collisionally dissociated by injection into the drift tube at elevated kinetic energies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja045336d | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!