The use of anionic water-soluble conjugated polymers (CPs) for sensing the presence of avidin by use of a biotin-modified fluorescence quencher was studied. The molecules involved in the study included poly[2-methoxy-5-(3'-propyloxysulfonate)-1,4-phenylenevinylene] with either lithium (Li+-MPS-PPV) or sodium (Na(+)-MPS-PPV) countercations, the well-defined oligomer pentasodium 1,4-bis(4'(2",4"-bis(butoxysulfonate)-styryl)-styryl)2-butoxysulfonate-5-methoxybenzene (5R5-), the quenchers N-methyl-4,4'-pyridylpyridinium iodide (mMV+) and [N-(biotinoyl)-N'-(acetyl 4,4'-pyridylpyridinium iodide)] ethylenediamine (BPP+), which contains a molecular recognition fragment (biotin) attached to a unit that accepts an electron from a CP excited state, and the proteins avidin, tau, BSA, and pepsin A. Fluorescence quenching experiments were examined in a variety of conditions. Experiments carried out in water and in ammonium carbonate buffer (which ensures avidin/biotin complexation) reveal that nonspecific interactions between the CP and the proteins cause substantial perturbations on the CP fluorescence. The overall findings are not consistent with a simple mechanism whereby avidin complexation of BPP+ leads to encapsulation of the quencher molecule and recovery of Li+-MPS-PPV fluorescence. Instead, we propose that binding of BPP+ to avidin results in the quenching unit attaching to a positively charged macromolecule. Electrostatic attraction to the negatively charged conjugated polymer results in closer proximity to the quencher. Therefore, more enhanced fluorescence quenching is observed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja0469737DOI Listing

Publication Analysis

Top Keywords

nonspecific interactions
8
fluorescence quenching
8
fluorescence
5
perturbation fluorescence
4
fluorescence nonspecific
4
interactions anionic
4
anionic polyphenylenevinylenes
4
polyphenylenevinylenes proteins
4
proteins implications
4
implications biosensors
4

Similar Publications

Rapid identification of pathogenic bacteria from clinical positive blood cultures virus-like magnetic bead enrichment and MALDI-TOF MS profiling.

Analyst

January 2025

Institutes of Biomedical Sciences & Shanghai Stomatological Hospital, Department of Chemistry, Fudan University, Shanghai 200433, China.

Reducing the time required for the detection of bacteria in blood samples is a critical area of investigation in the field of clinical diagnosis. Positive blood culture samples often require a plate culture stage due to the interference of blood cells and proteins, which can result in significant delays before the isolation of single colonies suitable for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis. In this study, we developed a non-specific enrichment strategy based on SiO-encapsulated FeO nanoparticles combined with MALDI-TOF MS for direct identification of bacteria from aqueous environments or positive blood culture samples.

View Article and Find Full Text PDF

CRISPR-Cas12a is widely used for genome editing and biomarker detection since it can create targeted double-stranded DNA breaks and promote non-specific DNA cleavage after identifying specific DNA. To mitigate the off-target DNA cleavage of Cas12a, we previously developed a Cas12a variant (FnoCas12a ) by introducing double proline substitutions (K969P/D970P) in a conserved helix called the bridge helix (BH). In this work, we used cryogenic electron microscopy (cryoEM) to understand the molecular mechanisms of BH- mediated activation of Cas12a.

View Article and Find Full Text PDF

Light enhances the production of conidia and influences their hydrophobicity in Tolypocladium inflatum.

Fungal Biol

February 2025

Fungal Stress Laboratory, Universidade Tecnológica Federal Do Paraná, Dois Vizinhos, PR, 85660-000, Brazil. Electronic address:

Insect fungal pathogens such as Beauveria bassiana, Metarhizium robertsii, and Tolypocladium inflatum have been used as insect biocontrol agents. Their infection mechanism involves non-specific adhesion to the host cuticle, which is controlled by hydrophobins, small proteins that form an amphipathic monolayer with rodlet morphology on diverse fungal structures. Light is an abiotic factor that may influence a wide range of cellular processes, including conidiogenesis, stress tolerance, and metabolite biosynthesis.

View Article and Find Full Text PDF

Disordered regions of condensate-promoting proteins have distinct molecular signatures associated with cellular function.

J Mol Biol

January 2025

Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390 USA. Electronic address:

Disordered regions of proteins play crucial roles in cellular functions through diverse mechanisms. Some disordered regions function by promoting the formation of biomolecular condensates through dynamic multivalent interactions. While many have assumed that interactions among these condensate-promoting disorder regions are non-specific, recent studies have shown that distinct sequence compositions and patterning lead to specific condensate compositions associated with cellular function.

View Article and Find Full Text PDF

Background: Declining gait performance is seen in aging individuals, due to neural and systemic factors. Plasma biomarkers provide an accessible way to assess evolving brain changes; non-specific neurodegeneration (NfL, GFAP) or evolving Alzheimer's disease (Aβ 42/40 ratio, P-Tau181).

Methods: In a population-based cohort of older adults, we evaluate the hypothesis that plasma biomarkers of neurodegeneration and Alzheimer's Disease pathology are associated with worse gait performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!