Specific interaction between human IgM and polyclonal antibodies immobilized on support was studied by atomic force microscopy. Human IgMs are responsible for a number of side effects arising during the xenotransplantation of mammalian organs to man. On the basis of atomic force microscopy, a quantitative analysis of complexes with IgM was performed. The data of the analysis agree well with the results of enzyme immunoassay. It was shown that the method of detection of immune complexes based on atomic force microscopy is able to detect specific antibodies/antigens in serum.

Download full-text PDF

Source

Publication Analysis

Top Keywords

atomic force
16
force microscopy
12
quantitative analysis
8
analysis complex
4
complex formation
4
formation igm
4
igm immobilized
4
immobilized ligand
4
atomic
4
ligand atomic
4

Similar Publications

Background: Previous studies have suggested that changes in the composition of the extracellular matrix (ECM) play a significant role in the development of ligamentum flavum hypertrophy (LFH) and the histological differences between the ventral and dorsal layers of the hypertrophied ligamentum flavum. Although LFH is associated with increased fibrosis in the dorsal layer, comprehensive research exploring the characteristics of the ECM and its mechanical properties in both regions is limited. Furthermore, the distribution of fibrosis-associated myofibroblasts within LFH remains poorly understood.

View Article and Find Full Text PDF

High purity quartz glass is an important material in high-tech industries like semiconductors and photovoltaics due to, among other properties, its good mechanical performance at high temperatures. Small amounts of Al in silica glass (in the range between 20 ppm and 100 ppm) have previously been shown to increase the viscosity of the SiO glass. The underlying mechanism for this increase is, however, not well understood.

View Article and Find Full Text PDF

Background: To investigate the antibiofilm effect and mechanism of the silver nanowire (AgNW)-modified glass ionomer cement (GIC) against multi-species oral biofilm, and to examine the mechanical and biochemical properties of this novel GIC material.

Methods: Conventional GIC was incorporated with different concentrations of AgNW and silver nanoparticles (AgNP). Multi-species biofilms of Streptococcus mutans, Streptococcus sobrinus, Lactobacillus fermentum, and Lactobacillus rhamnosus were cultured for 72 h on GIC specimens.

View Article and Find Full Text PDF

Objectives: Previous studies reported various methods of measuring fracture toughness of dental ceramics. The objectives of this study were to compare different methods and to validate fractal analysis to estimate fracture toughness for a polycrystalline dental ceramic.

Methods: Bar-shaped specimens were prepared from 3 mol% yttria-stabilized tetragonal polycrystalline (3Y-TZP) ceramic.

View Article and Find Full Text PDF

Physicochemical Design of Nanoparticles to Interface with and Degrade Neutrophil Extracellular Traps.

ACS Appl Mater Interfaces

January 2025

University of California, Berkeley─University of California, San Francisco Graduate Program in Bioengineering, San Francisco, California 94158, United States.

Neutrophil extracellular traps (NETs) are networks of decondensed chromatin, histones, and antimicrobial proteins released by neutrophils in response to an infection. NET overproduction can cause an exacerbated hyperinflammatory response in a variety of diseases and can lead to host tissue damage without clearance of infection. Nanoparticle drug delivery is a promising avenue for creating materials that can both target NETs and deliver sustained amounts of NET-degrading drugs to alleviate hyperinflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!