This paper is the third in a series designed to demonstrate the application of rigorous, systematic hazard identification techniques to ecological systems. Here we use Hierarchical Holographic Modelling to identify the potential ecological hazards associated with the commercial release of herbicide tolerant oilseed rape. Hierarchical Holographic Models decompose complex systems into a series of sub-systems and consider interactions between the components and processes of these sub-systems in order to identify hazards. In this example we considered 1356 potential interactions between the biological, chemical and physical components and processes of the herbicide tolerant oilseed rape environment, and identified 152 potential hazards, grouped into 14 categories. The hazards were subsequently scored for degree of concern and plausibility, and then compared with an equivalent list of hazards generated independently by a checklist approach. The incidence of herbicide tolerant volunteers (and weeds) both on and off the farm had the highest average score of all the ecological hazard categories. The checklist based approach identified or implied 44% of the hazards identified in the Hierarchical Holographic Model, including nine of the ten hazards ranked most important. The checklist approach focussed almost exclusively on the phenotypic and genotypic hazards associated with herbicide tolerant oilseed rape and largely ignored the hazards associated with the circumstances surrounding its use. As a result the checklist identified only 6 out of the 79 potential hazards associated with changes to farming practice. The commercial release of herbicide tolerant oilseed rape will be associated with changes in tillage and the application of post-emergent herbicides. It may also lead to changes in spray schedules of insecticide and fungicide. Many of the environmental hazards identified with these changes are plausible and may warrant further investigation or targeted monitoring.

Download full-text PDF

Source
http://dx.doi.org/10.1051/ebr:2004012DOI Listing

Publication Analysis

Top Keywords

herbicide tolerant
24
tolerant oilseed
20
oilseed rape
20
hierarchical holographic
16
hazards associated
16
hazards
11
ecological systems
8
systems hierarchical
8
holographic model
8
commercial release
8

Similar Publications

Paddy field ecosystems are crucial for crop production, biodiversity conservation, and ecosystem services. Although previous studies have examined paddy field biodiversity, few have addressed how the distribution and species richness of vegetation and soil seed banks are regulated. This study investigated the distribution of wetland plants and soil seed banks in paddy fields across diverse habitat types and identified factors influencing their patterns.

View Article and Find Full Text PDF

Orphan crops are important sources of nutrition in developing regions and many are tolerant to biotic and abiotic stressors; however, modern crop improvement technologies have not been widely applied to orphan crops due to the lack of resources available. There are orphan crop representatives across major crop types and the conservation of genes between these related species can be used in crop improvement. Machine learning (ML) has emerged as a promising tool for crop improvement.

View Article and Find Full Text PDF

Agricultural pollutants co-interact and affect the vital functions, stress tolerance, resistance, immunity, and survival of insect pests. These metal-herbicide interactions have inevitable but remarkable effects on insects, which remain poorly understood. Here, we examined the effects of the interactions among zinc (Zn), iron (Fe), and paraquat (PQ) at a sublethal dose on the physiological response of the Egyptian cotton leafworm .

View Article and Find Full Text PDF

Glyphosate (Gly) is a widely used herbicide for weed control in agriculture, but it can also adversely affect crops by impairing growth, reducing yield, and disrupting nutrient uptake, while inducing toxicity. Therefore, adopting integrated eco-friendly approaches and understanding the mechanisms of glyphosate tolerance in plants is crucial, as these areas remain underexplored. This study provides proteome insights into Si-mediated improvement of Gly-toxicity tolerance in Brassica napus.

View Article and Find Full Text PDF

Towards enhancing phytoremediation: The effect of syringic acid, a plant secondary metabolite, on the presence of phenoxy herbicide-tolerant endophytic bacteria.

Sci Total Environ

January 2025

UNESCO Chair on Ecohydrology and Applied Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland.

Among emerging pollutants, residuals of phenoxy herbicides, including 2-chloro-4-methylphenoxy acid (MCPA), are frequently detected in non-targeted areas. MCPA can be removed from environmental matrices using biological remediation methods including endophyte-assisted phytoremediation. The interactions between selected plants excreting to the rhizosphere plant secondary metabolites (PSMs) and plant-associated bacteria (incl.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!