Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A general synthetic method for the preparation of nanostructured materials with large surface area was developed by using nanoparticle building blocks. The preparation route involves the self-assembly of functionalized nanoparticles in a liquid-crystal phase. These nanoparticles are functionalized by using difunctional amino acid species to provide suitable interactions with the template. Optimum interactions for self-assembly of the nanoparticles in the liquid-crystal phase were achieved with one -NH2 group anchored to the nanoparticle surface per 25 A(2). To maximize the surface area of these materials, the wall thicknesses are adjusted so that they are composed of a monolayer of nanoparticles. To form such materials, numerous parameters have to be controlled such as the relative volume fraction of the nanoparticles and the template and size matching between the hydrophilic component of the copolymer and nanoparticles. The surface functionalization renders our synthetic route independent of the nanoparticles and allows us to prepare a variety of nanostructured composite materials that consist of a juxtaposition of different discrete oxide nanoparticles. Examples of such materials include CeO2, ZrO2, and CeO2-Al(OH)3 composites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.200400535 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!