Although glycine is a major inhibitory transmitter in the mammalian CNS, the role of glycinergic neurons in defined neuronal circuits remains ill defined. This is due in part to difficulties in identifying these cells in living slice preparations for electrophysiological recordings and visualizing their axonal projections. To facilitate the morphological and functional analysis of glycinergic neurons, we generated bacterial artificial chromosome (BAC) transgenic mice, which specifically express enhanced green fluorescent protein (EGFP) under the control of the promotor of the glycine transporter (GlyT) 2 gene, which is a reliable marker for glycinergic neurons. Neurons expressing GlyT2-EGFP were intensely fluorescent, and their dendrites and axons could be visualized in great detail. Numerous positive neurons were detected in the spinal cord, brainstem, and cerebellum. The hypothalamus, intralaminar nuclei of the thalamus, and basal forebrain also received a dense GlyT2-EGFP innervation, whereas in the olfactory bulb, striatum, neocortex, hippocampus, and amygdala positive fibers were much less abundant. No GlyT2-EGFP-positive cell bodies were seen in the forebrain. On the subcellular level, GlyT2-EGFP fluorescence was colocalized extensively with glycine immunoreactivity in somata and dendrites and with both glycine and GlyT2 immunoreactivity in axon terminals, as shown by triple staining at all levels of the neuraxis, confirming the selective expression of the transgene in glycinergic neurons. In slice preparations of the spinal cord, no difference between the functional properties of EGFP-positive and negative neurons could be detected, confirming the utility of visually identifying glycinergic neurons to investigate their functional role in electrophysiological studies.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cne.20349DOI Listing

Publication Analysis

Top Keywords

glycinergic neurons
24
neurons expressing
8
enhanced green
8
green fluorescent
8
fluorescent protein
8
bacterial artificial
8
artificial chromosome
8
transgenic mice
8
neurons
8
slice preparations
8

Similar Publications

Background And Objectives: Autoantibodies (aAbs) against glycine receptors (GlyRs) are mainly associated with the rare neurologic diseases stiff person syndrome (SPS) and progressive encephalomyelitis with rigidity and myoclonus (PERM). GlyR aAbs are also found in other neurologic diseases such as epilepsy. The aAbs bind to different GlyR α-subunits and, more rarely, also to the GlyR β-subunit.

View Article and Find Full Text PDF

Retinal ganglion cells (RGCs) typically respond to light stimulation over their spatially restricted receptive field. Using large-scale recordings in the mouse retina, we show that a subset of non- direction-selective (DS) RGCs exhibit asymmetric activity, selective to motion direction, in response to a stimulus crossing an area far beyond the classic receptive field. The extraclassical response arises via inputs from an asymmetric distal zone and is enhanced by desensitization mechanisms and an inherent DS component, creating a network of neurons responding to motion toward the optic disc.

View Article and Find Full Text PDF

The mesopontine tegmental anesthesia area (MPTA) is a focal brainstem locus which, when exposed to GABAergic agents, induces brain-state transitioning from wakefulness to unconsciousness. Correspondingly, MPTA lesions render animals relatively insensitive to GABAergic anesthetics delivered systemically. Using chemogenetics, we recently identified a neuronal subpopulation within the MPTA whose excitation induces this same pro-anesthetic effect.

View Article and Find Full Text PDF

Mechanisms underlying modulation of human GlyRα3 by Zn and pH.

Sci Adv

December 2024

Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4970, USA.

Glycine receptors (GlyRs) regulate motor control and pain processing in the central nervous system through inhibitory synaptic signaling. The subtype GlyRα3 expressed in nociceptive sensory neurons of the spinal dorsal horn is a key regulator of physiological pain perception. Disruption of spinal glycinergic inhibition is associated with chronic inflammatory pain states, making GlyRα3 an attractive target for pain treatment.

View Article and Find Full Text PDF
Article Synopsis
  • Orientation detection is key to understanding visual scenes, and the study focuses on B/K wide-field amacrine cells (B/K WACs) in mouse retinas, which are giant interneurons involved in this process.
  • B/K WACs show orientation-tuned calcium signals and unique "compartmentalized pooling," which contributes to their ability to selectively respond to different orientations due to their electrotonically isolated dendrites.
  • The research indicates that the receptive fields of these amacrine cells utilize center-surround antagonism and specific inhibitory mechanisms to enhance orientation selectivity, providing insights into how the visual system processes orientation.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!