Dilated cardiomyopathies (DCM) are due to progressive dilatation of the cardiac cavities and thinning of the ventricular walls and lead unavoidably to heart failure. They represent a major cause for heart transplantation and, therefore, defining an efficient symptomatic treatment for DCM remains a challenge. We have taken advantage of the hamster strain CHF147 that displays progressive cardiomyopathy leading to heart failure to test whether stimulation of a hypertrophic pathway could delay the process of dilatation.Six month old CHF147 hamsters were treated with IGF-1 so that we could compare the efficacy of systemic administration of human recombinant IGF-1 protein (rh IGF-1) at low dose to that of direct myocardial injections of a plasmid DNA containing IGF-1 cDNA (pCMV-IGF1).IGF-1 treatment did not induce a significant variation of ventricle mass, but preserved left ventricular (LV) wall thickness and delayed dilatation of cardiac cavities when compared to non-treated hamsters. Together with this reduction of dilatation, we also noted a reduction in the amount of interstitial collagen. Furthermore, IGF-1 treatment induced beneficial effects on cardiac function since treated hamsters presented improved cardiac output and stroke volume, decreased end diastolic pressure when compared to nontreated hamsters and also showed a trend towards increased contractility (dP/dt(max)).This study provides evidence that IGF-1 treatment induces beneficial structural and functional effects on DCM of CHF147 hamsters, hence making this molecule a promising candidate for future gene therapy of heart failure due to DCM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00395-004-0506-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!