Effect of the energy supply on filamentous growth and development in Physcomitrella patens.

J Exp Bot

Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, Box 7080, SE-750 07 Uppsala, Sweden.

Published: February 2005

The filamentous gametophyte of the moss Physcomitrella patens consists of two filament types called chloronemata and caulonemata. Chloronemal cells are photosynthetically active with numerous chloroplasts, while caulonemata help to spread the colony by radial growth. The balance between the two filament types is affected by external factors such as light and plant hormones. In the present study, caulonema formation and chloronemal branching have been monitored during high and low light conditions and in the presence of glucose, auxin, or cytokinin. These experiments were performed both in a wild-type strain and in a hxk1 knockout mutant which lacks the major hexokinase of Physcomitrella. It was found that caulonema formation is induced by high energy conditions such as high light and external glucose, while chloronemal branching is stimulated by low energy conditions such as reduced light, and in the hxk1 mutant. The hxk1 mutation also causes buds to appear on chloronemal filaments, which is rarely seen in the wild type, and shows increased sensitivity to cytokinin and abscisic acid. Based on these findings a model is proposed in which the energy supply of the moss colony regulates the balance between chloronemal and caulonemal growth.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/eri040DOI Listing

Publication Analysis

Top Keywords

energy supply
8
physcomitrella patens
8
filament types
8
caulonema formation
8
chloronemal branching
8
energy conditions
8
chloronemal
5
energy
4
supply filamentous
4
filamentous growth
4

Similar Publications

The deltoid ligament (medial collateral ligament) and the syndesmosis (a composite ligamentous structure at the distal tibiofibular junction) are critical for maintaining ankle stability. In cases of high-energy ankle fractures, these structures are often injured simultaneously, leading to instability and potential long-term complications such as post-traumatic arthritis. This review aims to explore advancements in minimally invasive techniques for the treatment of combined deltoid ligament and syndesmosis injuries, with a focus on optimizing surgical outcomes and reducing patient morbidity.

View Article and Find Full Text PDF

Reduced cerebral blood flow occurs early in the development of Alzheimer's disease (AD), but the factors producing this reduction are unknown. Here, we ask whether genetic and lifestyle risk factors for AD-the ε4 allele of the Apolipoprotein (APOE) gene, and physical activity-can together produce this reduction in cerebral blood flow which leads eventually to AD. Using in vivo two-photon microscopy and haemodynamic measures, we record neurovascular function from the visual cortex of physically active or sedentary mice expressing APOE3 and APOE4 in place of murine APOE.

View Article and Find Full Text PDF

DL-3-n-butylphthalide (NBP) exhibits promising pharmacological efficacy against ischemia-reperfusion injury, but its protective effects may involve many mechanisms that are yet to be fully understood. This study aimed to profile the metabolic alterations induced by NBP during the process of ischemia-reperfusion using spatial metabolomics. Our study found that NBP could significantly reduce the ischemic area and restore physical function by potentially modulating pathways of the citrate cycle, pyruvate metabolism, autophagy, and unsaturated fatty acid biosynthesis.

View Article and Find Full Text PDF

Wearable sensors have broad application potential in motion assessment, health monitoring, and medical diagnosis. However, relying on a specialized instrument for power supply and signal reading makes sensors unsuitable for on-site detection. To solve this problem, a reusable self-powered electrochromic sensor patch based on enzymatic biofuel cells were constructed to realize the on-site visualized monitoring.

View Article and Find Full Text PDF

Evaluation of forest eco-efficiency: A transformation of ecological value quantity perspective.

Sci Total Environ

January 2025

China Center for Energy Economics Research, School of Economics, Xiamen University, Fujian, Xiamen 361005, China. Electronic address:

Numerous beneficial products and services are offered by forest ecosystem. However, studies on the efficiency transformation perspective of forest ecological value are relatively few. This study accounts for material supply, ecological service, and cultural value when calculating the gross forest ecological economic product (GFEEP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!