Nte1p-mediated deacylation of phosphatidylcholine functionally interacts with Sec14p.

J Biol Chem

Atlantic Research Centre, Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada.

Published: March 2005

Deciphering the function of the essential yeast Sec14p protein has revealed a regulatory interface between cargo secretion from Golgi and lipid homeostasis. Abrogation of the CDP-choline (CDP-Cho) pathway for phosphatidylcholine (PC) synthesis allows for life in the absence of the otherwise essential Sec14p. Nte1p, the product of open reading frame YML059c, is an integral membrane phospholipase against CDP-Cho-derived PC producing intracellular glycerophosphocholine (GPCho) and free fatty acids. We monitored Nte1p activity through in vivo PC turnover measurements and observed that intracellular GPCho accumulation is decreased in a sec14(ts) strain shifted to 37 degrees C in 10 mm choline (Cho)-containing medium compared with a Sec14p-proficient strain. Overexpression of two Sec14p homologs Sfh2p and Sfh4p in sec14(ts) cells restored secretion and growth at the restrictive temperature but did not restore GPCho accumulation. Instead, newly synthesized PC was degraded by phospholipase D (Spo14p). Similar analysis performed in a sec14Delta background confirmed these observations. These results imply that the ability of Sfh2p and Sfh4p to restore secretion and growth is not through a shared function with Sec14p in the regulation of PC turnover via Nte1p. Furthermore, our analyses revealed a profound alteration of PC metabolism triggered by the absence of Sec14p: Nte1p unresponsiveness, Spo14p activation, and deregulation of Pct1p. Sfh2p- and Sfh4p-overexpressing cells coped with the absence of Sec14p by controlling the rate of phosphocholine formation, limiting the amount of Cho available for this reaction, and actively excreting Cho from the cell. Increased Sfh4p also significantly reduced the uptake of exogenous Cho. Beyond the new PC metabolic control features we ascribe to Sfh2p and Sfh4p we also describe a second role for Sec14p in mediating PC homeostasis. Sec14p acts as a positive regulator of Nte1p-mediated PC deacylation with the functional consequence of increased Nte1p activity increasing the permissive temperature for the growth of sec14(ts) cells.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M413999200DOI Listing

Publication Analysis

Top Keywords

sfh2p sfh4p
12
sec14p
9
nte1p-mediated deacylation
8
sec14p nte1p
8
nte1p activity
8
gpcho accumulation
8
sec14ts cells
8
secretion growth
8
absence sec14p
8
nte1p
5

Similar Publications

Nte1p-mediated deacylation of phosphatidylcholine functionally interacts with Sec14p.

J Biol Chem

March 2005

Atlantic Research Centre, Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada.

Deciphering the function of the essential yeast Sec14p protein has revealed a regulatory interface between cargo secretion from Golgi and lipid homeostasis. Abrogation of the CDP-choline (CDP-Cho) pathway for phosphatidylcholine (PC) synthesis allows for life in the absence of the otherwise essential Sec14p. Nte1p, the product of open reading frame YML059c, is an integral membrane phospholipase against CDP-Cho-derived PC producing intracellular glycerophosphocholine (GPCho) and free fatty acids.

View Article and Find Full Text PDF

Transcription of yeast phospholipid biosynthesis structural genes, which contain an inositol-sensitive upstream activating sequence in their promoters, responds to the availability of the soluble precursors inositol and choline and to changes in phospholipid metabolism. The INO1 gene is deregulated (derepressed when inositol is present) under the conditions of increased phosphatidylcholine (PtdCho) turnover, as occurs in the sec14Delta cki1Delta strain (SEC14 encodes the major yeast phosphatidylinositol transfer protein; CKI1 encodes choline kinase of the cytidine diphosphate choline pathway of PtdCho biosynthesis). Five proteins (Sfhp) share sequence homology with phosphatidylinositol transfer protein Sec14p.

View Article and Find Full Text PDF

Sec14p of the yeast Saccharomyces cerevisiae is involved in protein secretion and regulation of lipid synthesis and turnover in vivo, but acts as a phosphatidylinositol-phosphatidylcholine transfer protein in vitro. In this work, the five homologues of Sec14p, Sfh1p-Sfh5p, were subjected to biochemical and cell biological analysis to get a better view of their physiological role. We show that overexpression of SFH2 and SFH4 suppressed the sec14 growth defect in a more and SFH1 in a less efficient way, whereas overexpression of SFH3 and SFH5 did not complement sec14.

View Article and Find Full Text PDF

Yeast phosphatidylinositol transfer protein (Sec14p) is essential for Golgi function and cell viability. We now report a characterization of five yeast SFH (Sec Fourteen Homologue) proteins that share 24-65% primary sequence identity with Sec14p. We show that Sfh1p, which shares 64% primary sequence identity with Sec14p, is nonfunctional as a Sec14p in vivo or in vitro.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!