The most rapid method for the generation of conditional mutants in Trypanosoma brucei is the use of RNA interference. A single copy of the target sequence is cloned between two opposing T7 promoters bearing tet operators, and the resulting plasmid is integrated into the genome of cells expressing both the tet repressor and T7 RNA polymerase. Upon addition of tetracycline, double-stranded RNA is synthesised from the two T7 promoters. Unfortunately, repression of T7 promoter activity may sometimes be insufficient to prevent expression of toxic amounts of double-stranded RNA. We describe here cell lines in which the expression of T7 polymerase is under tetracycline control, and show that regulation of polymerase expression can modulate transcription from a constitutive T7 promoter. In addition we describe a construct containing two copies of the tn10 Tet repressor for easy creation of repressor-expressing trypanosomes, and an RNA interference vector which allows "TA" cloning of unmodified PCR products and blue/white selection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molbiopara.2004.10.002DOI Listing

Publication Analysis

Top Keywords

rna interference
12
trypanosoma brucei
8
tet repressor
8
double-stranded rna
8
rna
6
doubly inducible
4
inducible system
4
system rna
4
interference rapid
4
rapid rnai
4

Similar Publications

Application of the SpCas9 inhibitor BRD0539 for CRISPR/Cas9-based genetic tools in .

Biosci Microbiota Food Health

September 2024

Department of Agricultural Chemistry, Graduate School of Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan.

Although the clustered regularly interspaced short palindromic repeat (CRISPR)-Cas system has been extensively developed since its discovery for eukaryotic and prokaryotic genome editing and other genetic manipulations, there are still areas warranting improvement, especially regarding bacteria. In this study, BRD0539, a small-molecule inhibitor of Cas9 (SpCas9), was used to suppress the activity of the nuclease during genetic modification of , as well as to regulate CRISPR interference (CRISPRi). First, we developed and validated a CRISPR-SpCas9 system targeting the gene of .

View Article and Find Full Text PDF

DjsoxP-1 and Djsox5 are essential for tissue homeostasis and regeneration in Dugesia japonica.

Cell Tissue Res

January 2025

College of Life Science, Henan Normal University, No. 46, Jianshe Road, Xinxiang 453007, Henan, China.

Sox genes encode a family of transcription factors that regulate multiple biological processes during metazoan development, including embryogenesis, tissue homeostasis, nervous system specification, and stem cell maintenance. The planarian Dugesia japonica contains a reservoir of stem cells that grow and divide continuously to support cellular turnover. However, whether SOX proteins retain these conserved functions in planarians remains to be determined.

View Article and Find Full Text PDF

Characterization of sulfakinin and its role in larval feeding and molting in Spodoptera frugiperda.

Insect Sci

January 2025

Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China.

Feeding and molting are particularly important physiological processes for insects, and it has been reported that neuropeptides are involved in the nervous regulation of these 2 processes. Sulfakinin (SK) is an important neuropeptide that is widely distributed among insects and plays a pivotal role in regulating feeding, courtship, aggression, and locomotion. In this study, we investigated the involvement of SK in feeding and molting on a highly notorious pest insect, the fall armyworm, Spodoptera frugiperda.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is infamous for its aggressive phenotype and poorer prognosis when compared to other breast cancer subtypes. One factor contributing to this poor prognosis is that TNBC lacks expression of the receptors that available hormonal or molecular-oriented therapies attack. New treatments that exploit biological targets specific to TNBC are desperately needed to improve patient outcomes.

View Article and Find Full Text PDF

Peritoneal dissemination frequently develops in patients with ovarian cancer (OC) and is associated with recurrence and metastasis. However, the cellular components and mechanisms supporting OC peritoneal metastasis are poorly understood. To elucidate these, we utilized RNA sequencing to investigate the cellular composition and function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!