Endothelial cell activation in the presence of African trypanosomes.

Mol Biochem Parasitol

EA 3174 Neuroparasitologie et Neuroépidémiologie Tropicales, Medicine Faculty, Limoges, France.

Published: January 2005

AI Article Synopsis

  • Trypanosomes invade the central nervous system during human African trypanosomiasis, but how they affect the blood-brain barrier is unclear.
  • In laboratory studies, human bone marrow endothelial cells (HBMEC) showed activation in the presence of T. b. gambiense, indicated by changes in certain proteins and the production of inflammatory cytokines.
  • The research suggests that soluble components from the trypanosomes, specifically variant surface glycoproteins (VSGs), are responsible for activating endothelial cells, potentially leading to increased inflammation, recruitment of immune cells, and compromised barriers that allow the parasites into the CNS.

Article Abstract

During human African trypanosomiasis, trypanosomes (Trypanosoma brucei gambiense or T. b. rhodesiense) invade the central nervous system (CNS). Mechanisms of blood-brain barrier and blood-cerebrospinal fluid barrier leakage remain unknown. To better understand the relationships between trypanosomes and endothelial cells, the principal cell population of those barriers, we cultured a human bone marrow endothelial cell (HBMEC) line in the presence or absence of T. b. gambiense, to study cell activation. As indicated by NF-kappaB translocation to the nucleus, cells were activated in the presence of trypanosomes. The expression of the adhesion molecules ICAM-1, E-selectin and VCAM-1 increased in co-culture. The parasites induced the synthesis of the pro-inflammatory cytokines TNF-alpha, IL-6 and IL-8, and of nitric oxide (NO) by HBMEC. Cells were also cultured in the presence of parasite variant surface glycoproteins (VSGs), and an increase in TNF-alpha, IL-6, IL-8, and NO synthesis was also observed. Soluble VSGs induced NF-kappaB translocation, and the expression of adhesion molecules, indicating that they could possibly be the molecular soluble factor responsible for endothelial cell activation. The permeability coefficient of HBMEC layer increased when cells were cultured in the presence of trypanosomes, parasite culture supernatant, or VSGs. Thus, T. b. gambiense can activate endothelial cells in vitro, through the release of soluble activating factors. Consequences of endothelial cell activation by parasite products may include a potentiation of the inflammatory reaction, leukocyte recruitment, passage of trypanosomes into the CNS, and barrier dysfunction observed during CNS involvement of HAT.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molbiopara.2004.09.008DOI Listing

Publication Analysis

Top Keywords

endothelial cell
16
cell activation
16
endothelial cells
8
nf-kappab translocation
8
presence trypanosomes
8
expression adhesion
8
adhesion molecules
8
tnf-alpha il-6
8
il-6 il-8
8
cells cultured
8

Similar Publications

Fluid shear stress (FSS) from blood flow sensed by vascular endothelial cells (ECs) determines vessel behavior, but regulatory mechanisms are only partially understood. We used cell state transition assessment and regulation (cSTAR), a powerful computational method, to elucidate EC transcriptomic states under low shear stress (LSS), physiological shear stress (PSS), high shear stress (HSS), and oscillatory shear stress (OSS) that induce vessel inward remodeling, stabilization, outward remodeling, or disease susceptibility, respectively. Combined with a publicly available database on EC transcriptomic responses to drug treatments, this approach inferred a regulatory network controlling EC states and made several notable predictions.

View Article and Find Full Text PDF

Ovarian cancer is a common malignant tumor in women, exhibiting a certain sensitivity to chemotherapy drugs like gemcitabine (GEM). This study, through the analysis of ovarian cancer single-cell RNA sequencing (scRNA-seq) data and transcriptome data post-GEM treatment, identifies the pivotal role of hypoxia-inducible factor 1 alpha (HIF-1α) in regulating the treatment process. The results reveal that HIF-1α modulates the expression of VEGF-B, thereby inhibiting the fibroblast growth factor 2 (FGF2)/FGFR1 signaling pathway and impacting tumor formation.

View Article and Find Full Text PDF

A novel quantitative angiogenesis assay based on visualized vascular organoid.

Angiogenesis

January 2025

Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing Advanced Center of Cellular Homeostasis and Aging-Related Diseases, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing, 100191, China.

Angiogenesis describes the sprouting of blood vessels from existing vasculatures and it plays a pivotal role in disease progress such as diabetes, age-related macular degeneration and cancer. However, the most widely used anti-angiogenic agents targeting vascular endothelial growth factor (VEGF) pathway still lacked of specificity and therapeutic efficacy. To establish a method suitable for high-throughput drug screening and faithfully recapitulate the feature of in vivo angiogenesis, we generated a PECAM1-mRuby3-secNluc; ACTA2-EGFP dual reporter human pluripotent stem cell (hPSC) line and utilizing the cell line to establish a visualized and quantifiable in vitro angiogenesis model with stem cell-derived vascular organoid.

View Article and Find Full Text PDF

Co-delivery of antioxidants and siRNA-VEGF: promising treatment for age-related macular degeneration.

Drug Deliv Transl Res

January 2025

Pharmaceutical Research and Development, Ezequiel Dias Foundation, Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte, CEP 30510-010, Minas Gerais, Brazil.

Current treatments for retinal disorders are anti-angiogenic agents, laser photocoagulation, and photodynamic therapies. These conventional treatments focus on reducing abnormal blood vessel formation in the retina, which, in a low-oxygen environment, can lead to harmful proliferation of endothelial cells. This results in dysfunctional, leaky blood vessels that cause retinal edema, hemorrhage, and vision loss.

View Article and Find Full Text PDF

O-linked N-acetylglucosamine transferase (OGT)-catalyzed O-linked N-acetylglucosamine glycosylation (O-GlcNAcylation) is closely associated with diabetes progression. This study aims to investigate the mechanism of OGT in regulating endothelial dysfunction in gestational diabetes mellitus (GDM). Expressions of OGT, O-linked N-acetylglucosamine (O-GlcNAc), enhancer of zeste homolog 2 (EZH2), and HEK27me3 in human umbilical vein endothelial cells (HUVECs) and GDM-derived HUVECs (GDM-HUVECs) were assessed by western blot.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!