Introduction: We conducted an acute echocardiographic study comparing hemodynamic and ventricular dyssynchrony parameters during left ventricular pacing (LVP) and biventricular pacing (BVP). We sought to clarify the mechanisms responsible for similar hemodynamic improvement despite differences in electrical activation.
Methods And Results: Thirty-three patients underwent echocardiography prior to implantation with a multisite pacing device (spontaneous rhythm [SR]) and 2 days after implantation (BVP and LVP). Interventricular dyssynchrony (pulsed-wave Doppler), extent of myocardium displaying delayed longitudinal contraction (%DLC; tissue tracking), and index of LV dyssynchrony (pulsed-wave tissue Doppler imaging) were assessed. Compared to SR, BVP and LVP caused similar significant improvement of cardiac output (LVP: 3.2 +/- 0.5, BVP: 3.1 +/- 0.7, SR: 2.3 +/- 0.6 L/min; P < 0.01) and mitral regurgitation (LVP: 25.1 +/- 10, BVP: 24.7 +/- 11, baseline: 37.9 +/- 14% jet area/left atria area; P < 0.01). LVP resulted in a smaller index of LV dyssynchrony than BVP (29 +/- 10 vs 34 +/- 14; P < 0.05). However, LVP exhibited a longer aortic preejection delay (220 +/- 34 vs 186 +/- 28 msec; P < 0.01), longer LV electromechanical delays (244.5 +/- 39 vs 209.5 +/- 47 msec; P < 0.05), greater interventricular dyssynchrony (56.6 +/- 18 vs 31.4 +/- 18; P < 0.01), and higher%DLC (40.1 +/- 08 vs 30.3 +/- 09; P < 0.05), leading to shorter LV filling time (387 +/- 54 vs 348 +/- 44 msec; P < 0.05) compared to BVP.
Conclusion: Although LVP and BVP provide similar hemodynamic improvement, LVP results in more homogeneous but substantially delayed LV contraction, leading to shortened filling time and less reduction in postsystolic contraction. These data may influence the choice of individual optimal pacing configuration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1540-8167.2004.04318.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!