Several studies have demonstrated that proteins incorporating fluorinated analogues of hydrophobic amino acids such as leucine and valine into their hydrophobic cores exhibit increased stability toward thermal denaturation and unfolding by guanidinium chloride. However, estimates for the increase in the thermodynamic stability of a protein (DeltaDeltaG(unfold)) afforded by the substitution of a hydrophobic amino acid with its fluorinated analogue vary quite significantly. To address this, we have designed a peptide that adopts an antiparallel four-helix bundle structure in which the hydrophobic core is packed with leucine, and investigated the effects of substituting the central two layers of the core with L-5,5,5,5',5',5'-hexafluoroleucine (hFLeu). We find that DeltaDeltaG(unfold) is increased by 0.3 kcal/mol per hFLeu residue. This is in good agreement with the predicted increase in DeltaDeltaG(unfold) of 0.4 kcal/mol per residue arising from the increased hydrophobicity of the hFLeu side chain, which we determined experimentally from partitioning measurements on hFLeu and leucine. The increased stability of this fluorinated protein may therefore be ascribed to simple hydrophobic effects, rather than specific "fluorous" interactions between the hFLeu residues.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi049086pDOI Listing

Publication Analysis

Top Keywords

hydrophobic amino
8
increased stability
8
hydrophobic
5
hfleu
5
fluorous proteins
4
proteins novo
4
novo design
4
design characterization
4
characterization four-alpha-helix
4
four-alpha-helix bundle
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!