The visible absorption spectra of Radiachromic FWT-60 radiochromic film have been investigated to analyse the dosimetry characteristics of the film. The film is radiation sensitive to high absorbed doses. The visible absorption spectra of this film when exposed to photon radiation show a peak at 605 nm which is stable over the dose range of 0 Gy to 20 kGy. The radiation sensitive absorption spectra are present over the wavelength range of approximately 500 nm to 660 nm. Negligible dose response is seen in the infrared region or the UV region of wavelength readout. Variation of sensitivity of response can be achieved by varying the wavelength of readout with the maximum measured response of 0.077 OD units per kGy. The film can be an ideal dosimeter for areas where high dose levels need to be measured.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0031-9155/49/22/n01 | DOI Listing |
Adv Sci (Weinh)
January 2025
Emerging Materials R&D Division, Korea Institute of Ceramic Engineering & Technology, Jinju, Gyeongnam, 52851, Republic of Korea.
Innovative anode materials are essential for achieving high-energy-density lithium-ion batteries (LIBs) with longer lifetimes. Thus far, only a few studies have explored the use of layered perovskite structures as LIB anode materials. In this study, the study demonstrates the performance and charge/discharge mechanism of the previously undefined Ruddlesden-Popper Li₂La₂Ti₃O₁₀ (RPLLTO) as an anode material for LIBs.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
Intermolecular hydrogen bonds between carboxyl (COO) and amino groups are a common weak interaction in proteins. Infrared (IR) spectral assignment of such an intermolecular hydrogen bond provides a fingerprint for studying protein-protein interactions as its absorption frequency is affected by the molecular electrostatic environment. Temperature-dependent FTIR and temperature-jump time-resolved IR absorbance difference spectra of several typical amino acids and those of wild type and single-site mutated αB-crystallin were performed.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China.
Exploring the interactions between oxygen molecules and metal sites has been a significant topic. Most previous studies concentrated on enzyme-mimicking metal sites interacting with O to form M-OO species, leaving the development of new types of O-activating metal sites and novel adsorption mechanisms largely overlooked. In this study, we reported an Fe(II)-doped metal-organic framework (MOF) [FeZnH(bibtz)] (, Hbibtz = 1,1'-5,5'-bibenzo[][1,2,3]triazole), featuring an unprecedented tetrahedral Fe(II)HN site.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics, K.S.M Devaswom Board College, Sasthamcotta, Kollam, India.
Transition metal based optical limiting materials have garnered significant attention due their crucial role in protecting sensitive optical system from high intense laser damage. Transition metal molybdates exhibits nonlinear optical (NLO) response, which attenuate highly intense light by transmitting light of desired intensity. Herein we report Silver molybdate (AgMoO) nanostructures doped with erbium (Er) ions were successfully synthesized by simple co-precipitation technique.
View Article and Find Full Text PDFAnalyst
January 2025
Department of Chemistry, University of Victoria, Victoria, British Columbia, V8W 3V6, Canada.
Infrared absorption spectroscopy and surface-enhanced Raman spectroscopy were integrated into three data fusion strategies-hybrid (concatenated spectra), mid-level (extracted features from both datasets) and high-level (fusion of predictions from both models)-to enhance the predictive accuracy for xylazine detection in illicit opioid samples. Three chemometric approaches-random forest, support vector machine, and -nearest neighbor algorithms-were employed and optimized using a 5-fold cross-validation grid search for all fusion strategies. Validation results identified the random forest classifier as the optimal model for all fusion strategies, achieving high sensitivity (88% for hybrid, 92% for mid-level, and 96% for high-level) and specificity (88% for hybrid, mid-level, and high-level).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!