Absorption spectra analysis of exposed FWT-60 radiochromic film.

Phys Med Biol

Department of Physics and Materials Science, City University of Hong Kong, Kowloon Tong, Hong Kong.

Published: November 2004

The visible absorption spectra of Radiachromic FWT-60 radiochromic film have been investigated to analyse the dosimetry characteristics of the film. The film is radiation sensitive to high absorbed doses. The visible absorption spectra of this film when exposed to photon radiation show a peak at 605 nm which is stable over the dose range of 0 Gy to 20 kGy. The radiation sensitive absorption spectra are present over the wavelength range of approximately 500 nm to 660 nm. Negligible dose response is seen in the infrared region or the UV region of wavelength readout. Variation of sensitivity of response can be achieved by varying the wavelength of readout with the maximum measured response of 0.077 OD units per kGy. The film can be an ideal dosimeter for areas where high dose levels need to be measured.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0031-9155/49/22/n01DOI Listing

Publication Analysis

Top Keywords

absorption spectra
16
fwt-60 radiochromic
8
radiochromic film
8
visible absorption
8
radiation sensitive
8
wavelength readout
8
film
6
absorption
4
spectra analysis
4
analysis exposed
4

Similar Publications

Two Steps Li Ion Storage Mechanism in Ruddlesden-Popper LiLaTiO.

Adv Sci (Weinh)

January 2025

Emerging Materials R&D Division, Korea Institute of Ceramic Engineering & Technology, Jinju, Gyeongnam, 52851, Republic of Korea.

Innovative anode materials are essential for achieving high-energy-density lithium-ion batteries (LIBs) with longer lifetimes. Thus far, only a few studies have explored the use of layered perovskite structures as LIB anode materials. In this study, the study demonstrates the performance and charge/discharge mechanism of the previously undefined Ruddlesden-Popper Li₂La₂Ti₃O₁₀ (RPLLTO) as an anode material for LIBs.

View Article and Find Full Text PDF

Intermolecular hydrogen bonds between carboxyl (COO) and amino groups are a common weak interaction in proteins. Infrared (IR) spectral assignment of such an intermolecular hydrogen bond provides a fingerprint for studying protein-protein interactions as its absorption frequency is affected by the molecular electrostatic environment. Temperature-dependent FTIR and temperature-jump time-resolved IR absorbance difference spectra of several typical amino acids and those of wild type and single-site mutated αB-crystallin were performed.

View Article and Find Full Text PDF

Observation of O Molecules Inserting into Fe-H Bonds in a Ferrous Metal-Organic Framework.

J Am Chem Soc

January 2025

MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China.

Exploring the interactions between oxygen molecules and metal sites has been a significant topic. Most previous studies concentrated on enzyme-mimicking metal sites interacting with O to form M-OO species, leaving the development of new types of O-activating metal sites and novel adsorption mechanisms largely overlooked. In this study, we reported an Fe(II)-doped metal-organic framework (MOF) [FeZnH(bibtz)] (, Hbibtz = 1,1'-5,5'-bibenzo[][1,2,3]triazole), featuring an unprecedented tetrahedral Fe(II)HN site.

View Article and Find Full Text PDF

Transition metal based optical limiting materials have garnered significant attention due their crucial role in protecting sensitive optical system from high intense laser damage. Transition metal molybdates exhibits nonlinear optical (NLO) response, which attenuate highly intense light by transmitting light of desired intensity. Herein we report Silver molybdate (AgMoO) nanostructures doped with erbium (Er) ions were successfully synthesized by simple co-precipitation technique.

View Article and Find Full Text PDF

Infrared absorption spectroscopy and surface-enhanced Raman spectroscopy were integrated into three data fusion strategies-hybrid (concatenated spectra), mid-level (extracted features from both datasets) and high-level (fusion of predictions from both models)-to enhance the predictive accuracy for xylazine detection in illicit opioid samples. Three chemometric approaches-random forest, support vector machine, and -nearest neighbor algorithms-were employed and optimized using a 5-fold cross-validation grid search for all fusion strategies. Validation results identified the random forest classifier as the optimal model for all fusion strategies, achieving high sensitivity (88% for hybrid, 92% for mid-level, and 96% for high-level) and specificity (88% for hybrid, mid-level, and high-level).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!