Tumor cells frequently synthesize an N-terminally extended the FGF-2 isoform of 24 kDa devoid of signal peptide but that contains a functional nuclear localization sequence (NLS). Although the signaling pathways elicited by secreted FGF-2 are well described, the molecular mechanisms involved in the growth promoting action of nuclearized 24 kDa FGF-2 remain unknown. The cancer cell line AR4-2J was engineered to stably express only the 24 kDa FGF-2 isoform and cDNA microarrays were used to identify targets implicated in the intracrine-induced cell proliferation. Levels of 27 transcripts were found either upregulated or downregulated compared to control cells. Among the 18 upregulated genes was c-jun, which is often involved in cell proliferation. Real-time PCR and Western blot analyses confirmed c-jun induction at both mRNA and protein levels. The c-jun antisense oligonucleotide strategy pointed out the involvement of c-Jun in the 24 kDa FGF-2-induced cell proliferation. The mitogenic effect was found to depend on ERK pathway and not on phosphoinositide 3-kinase, p38 MAPK, c-Jun NH2-terminal kinase signal transducers. In addition, the MEK inhibitor PD98059 reduced the 24 kDa FGF-2-dependent c-Jun level. These data show that intracrine FGF-2-mediated regulation of cell growth involves ERK activation and consequent c-Jun expression. Thus, despite its incapacity to be secreted, the intracellular-localized 24 kDa FGF-2 can activate a growth-related signaling pathway normally elicited by cell surface receptors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ijc.20744 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!