We report herein the NMR structure of Tm0979, a structural proteomics target from Thermotoga maritima. The Tm0979 fold consists of four beta/alpha units, which form a central parallel beta-sheet with strand order 1234. The first three helices pack toward one face of the sheet and the fourth helix packs against the other face. The protein forms a dimer by adjacent parallel packing of the fourth helices sandwiched between the two beta-sheets. This fold is very interesting from several points of view. First, it represents the first structure determination for the DsrH family of conserved hypothetical proteins, which are involved in oxidation of intracellular sulfur but have no defined molecular function. Based on structure and sequence analysis, possible functions are discussed. Second, the fold of Tm0979 most closely resembles YchN-like folds; however the proteins that adopt these folds differ in secondary structural elements and quaternary structure. Comparison of these proteins provides insight into possible mechanisms of evolution of quaternary structure through a simple mechanism of hydrophobicity-changing mutations of one or two residues. Third, the Tm0979 fold is found to be similar to flavodoxin-like folds and beta/alpha barrel proteins, and may provide a link between these very abundant folds and putative ancestral half-barrel proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2253327PMC
http://dx.doi.org/10.1110/ps.041068605DOI Listing

Publication Analysis

Top Keywords

thermotoga maritima
8
tm0979 fold
8
quaternary structure
8
structure
6
fold
5
tm0979
5
proteins
5
novel member
4
member ychn-like
4
ychn-like fold
4

Similar Publications

Antibodies and antibody mimics are extensively used in the pharmaceutical industry, where stringent safety standards are required. Implementing heat sterilization during or after the manufacturing process could help prevent contamination by viruses and bacteria. However, conventional antibodies and antibody mimics are not suitable for heat sterilization because they irreversibly denature at high temperatures.

View Article and Find Full Text PDF

Glucose isomerase is generally used in the industrial production of high-fructose corn syrup, and a heat- and acid-resistant glucose isomerase is preferred. However, most glucose isomerases exhibit low activity or inactivation at low pH. In this study, we demonstrated that two combination mutants formed by introducing positive and negative charges near the active site and on the surface of the enzyme demonstrated a successful reduction in the optimal pH and increase in the specific activity of glucose isomerase from Thermotoga maritima (TMGI).

View Article and Find Full Text PDF

Biomimetic nicotinamide coenzymes, including nicotinamide mononucleotide (NMN), have been demonstrated as promising low-cost alternatives to nicotinamide adenine dinucleotide (phosphate) (NAD(P)) in biocatalysis. Herein, to efficiently regenerate NMNH from NMN in vitro powered by biomass sugars, a thermophilic NADP-dependent glucose 6-phosphate dehydrogenase from Thermotoga maritima (TmG6PDH) was engineered to increase the activity toward NMN. The catalytic efficiency (k/K) of optimal mutant (TmG6PDH-R7) toward NMN increased by 71.

View Article and Find Full Text PDF

Evaluation of expanded 2-aminobenzothiazole library as inhibitors of a model histidine kinase and virulence suppressors in Pseudomonas aeruginosa.

Bioorg Chem

December 2024

Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, MN 55455, United States; Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55454, United States; Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 321 Church Street SE, Minneapolis, MN 55455, United States. Electronic address:

Bacterial resistance to antibiotics is a rapidly increasing threat to human health. New strategies to combat resistant organisms are desperately needed. One potential avenue is targeting two-component systems, which are the main bacterial signal transduction pathways used to regulate development, metabolism, virulence, and antibiotic resistance.

View Article and Find Full Text PDF

Multifunctionality of a low-specificity L-threonine aldolase from the hyperthermophile Thermotoga maritima.

Extremophiles

August 2024

Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-Ku, Tokyo, 108-8641, Japan.

The peptidoglycan of the hyperthermophile Thermotoga maritima contains an unusual D-lysine in addition to the typical D-alanine and D-glutamate. Previously, we identified the D-lysine and D-glutamate biosynthetic pathways of T. maritima.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!