Mycobacterium tuberculosis is an intracellular pathogen persisting within phagosomes through interference with phagolysosome biogenesis. Here we show that stimulation of autophagic pathways in macrophages causes mycobacterial phagosomes to mature into phagolysosomes. Physiological induction of autophagy or its pharmacological stimulation by rapamycin resulted in mycobacterial phagosome colocalization with the autophagy effector LC3, an elongation factor in autophagosome formation. Autophagy stimulation increased phagosomal colocalization with Beclin-1, a subunit of the phosphatidylinositol 3-kinase hVPS34, necessary for autophagy and a target for mycobacterial phagosome maturation arrest. Induction of autophagy suppressed intracellular survival of mycobacteria. IFN-gamma induced autophagy in macrophages, and so did transfection with LRG-47, an effector of IFN-gamma required for antimycobacterial action. These findings demonstrate that autophagic pathways can overcome the trafficking block imposed by M. tuberculosis. Autophagy, which is a hormonally, developmentally, and, as shown here, immunologically regulated process, represents an underappreciated innate defense mechanism for control of intracellular pathogens.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cell.2004.11.038 | DOI Listing |
PLoS One
January 2025
Department of Anesthesiology & Perioperative Medicine, University of Rochester, Rochester, New York, United States of America.
Neurodegenerative diseases are often characterized by mitochondrial dysfunction. In Alzheimer's disease, abnormal tau phosphorylation disrupts mitophagy, a quality control process through which damaged organelles are selectively removed from the mitochondrial network. The precise mechanism through which this occurs remains unclear.
View Article and Find Full Text PDFInflammopharmacology
January 2025
Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, ElKasr Elaini Street, Cairo, 11562, Egypt.
The currently approved drugs for Alzheimer's disease (AD) are only for symptomatic treatment in the early stages of the disease but they could not halt the neurodegeneration, additionally, the safety profile of the recently developed immunotherapy is a big issue. This review aims to explain the importance of the drugs repurposing technique and strategy to develop therapy for AD. We illustrated the biological alterations in the pathophysiology of AD including the amyloid pathology, the Tau pathology, oxidative stress, mitochondrial dysfunction, neuroinflammation, glutamate-mediated excitotoxicity, insulin signaling impairment, wingless-related integration site/β-catenin signaling, and autophagy.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Brain Research Institute, Niigata University, Niigata, Niigata, Japan.
Background: Recent single-cell omics analyses have revealed that microglia change into reactive microglia when Aβ accumulates in the brain and exhibit Aβ phagocytosis. However, reactive microglia are less likely to be induced in TREM2 mutation carriers. This microglia-centred pathological mechanism may be considered one of the pathologies of AD.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
Background: Glaucoma is characterized by progressive optic nerve degeneration that results in irreversible blindness, and it can be considered a neurodegenerative disorder of both the eye and the brain. Increasing evidence suggest that glaucoma shares some common neurodegenerative pathways with Frontotemporal Lobar Degeneration (FTLD), Amyotrophic Lateral Sclerosis (ALS), and Alzheimer's Disease (AD) among others. Interestingly, a recent study revealed the presence of abnormal TAR DNA-binding protein 43 (TDP-43) inclusions and aggregates in retinal ganglion cells and other retinal cell types in FTLD-TDP patients; however, the significance of this pathology and its impact on retinal function and optical nerve integrity is unknown.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Wake Forest University School of Medicine, Winston-Salem, NC, USA.
Background: An important hallmark of Alzheimer's Disease (AD) is the presence of neurofibrillary tangles (NFTs) composed of phosphorylated tau, which are commonly assessed using AT8 immunostains. Identifying additional markers to characterize the spectrum of NFT pathology is crucial for advancing our understanding and diagnosis of AD. This study introduces new potential markers to differentiate between tangles and healthy neurons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!