Cytosolic 5'-nucleotidase/phosphotransferase specific for 6-hydroxypurine monophosphate derivatives (cN-II), belongs to a class of phosphohydrolases that act through the formation of an enzyme-phosphate intermediate. Sequence alignment with members of the P-type ATPases/L-2-haloacid dehalogenase superfamily identified three highly conserved motifs in cN-II and other cytosolic nucleotidases. Mutagenesis studies at specific amino acids occurring in cN-II conserved motifs were performed. The modification of the measured kinetic parameters, caused by conservative and nonconservative substitutions, suggested that motif I is involved in the formation and stabilization of the covalent enzyme-phosphate intermediate. Similarly, T249 in motif II as well as K292 in motif III also contribute to stabilize the phospho-enzyme adduct. Finally, D351 and D356 in motif III coordinate magnesium ion, which is required for catalysis. These findings were consistent with data already determined for P-type ATPases, haloacid dehalogenases and phosphotransferases, thus suggesting that cN-II and other mammalian 5'-nucleotidases are characterized by a 3D arrangement related to the 2-haloacid dehalogenase superfold. Structural determinants involved in differential regulation by nonprotein ligands and redox reagents of the two naturally occurring cN-II forms generated by proteolysis were ascertained by combined biochemical and mass spectrometric investigations. These experiments indicated that the C-terminal region of cN-II contains a cysteine prone to form a disulfide bond, thereby inactivating the enzyme. Proteolysis events that generate the observed cN-II forms, eliminating this C-terminal portion, may prevent loss of enzymic activity and can be regarded as regulatory phenomena.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1432-1033.2004.04457.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!