The first hybrid perovskites incorporating alcohol-based bifunctional ammonium cations, (HO(CH(2))(2)NH(3))(2)PbX(4) (X = I, Br), have been prepared and characterized. (HO(CH(2))(2)NH(3))(2)PbI(4) adopts a monoclinic cell, a = 8.935(1) A, b= 9.056(2) A, c = 10.214(3) A, beta = 100.26(1) degrees , V = 813.3(3) A(3), P2(1)/a, and Z = 2, and (HO(CH(2))(2)NH(3))(2)PbBr(4) is orthorhombic, a = 8.4625(6) A, b = 8.647(1) A, c = 19.918(2) A, V = 1457.5(2) A(3), Pbcn, and Z = 4. In the layered structures, a unique hydrogen-bond network connects adjacent perovskite layers, owing to OH....X, NH(3)(+)....X, and intermolecular NH(3)(+)...OH interactions. Its impact on the bonding features of the inorganic framework and on the quite short interlayer distance, in the case of (HO(CH(2))(2)NH(3))(2)PbI(4), is shown. As a result, a significant red shift of the exciton peaks (lambda = 536 nm (X = I), lambda = 417 nm (X = Br)), compared to other PbX(4)(2)(-)-based perovskite hybrids, is observed, revealing a reduced band gap. A reversible structural transition occurs at T = 96 degrees C (X = I) and T = 125 degrees C (X = Br). An orthorhombic cell of the high-temperature phase of (HO(CH(2))(2)NH(3))(2)PbI(4) with a(HT) = 18.567(6) A, b(HT) = 13.833(6) A, c(HT) = 6.437(2) A, and V = 1653 A(3) is proposed from powder X-ray diffraction. A change in the hydrogen bonding occurs, with molecules standing up in the interlayer space and OH parts probably interacting together, leading to a more conventional situation for ammonium groups and a more distorted perovskite layer. This is in accordance with the blue shift of the exciton peak to lambda = 505 nm (X = I) or to lambda = 374 nm (X = Br) during the phase transition.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic048814uDOI Listing

Publication Analysis

Top Keywords

hydrogen bonding
8
reduced band
8
band gap
8
phase transition
8
hybrid perovskites
8
shift exciton
8
unique hydrogen
4
bonding correlating
4
correlating reduced
4
gap phase
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!