Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A moiré-effect-based procedure used to measure the wavelength of coherent sources is shown. Two plane waves, individually coherent but mutually incoherent and located at the entrance pupil of a Michelson interferometer with slightly tilted mirrors, generate a moiré pattern at the output plane. The spatial period of that moiré pattern is determined by the spatial frequencies of the interferograms superimposed on intensity. Thus the spatial frequency of such moiré patterns allows the establishment of a ratio between the wavelengths of the sources that illuminate the interferometer. This ratio can be applied for the accurate determination of determining an unknown wavelength in terms of a reference wavelength, as we show both theoretically and experimentally.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/ao.43.006095 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!