In the transformation of plants by Agrobacterium tumefaciens the VirD2 protein has been shown to pilot T-DNA during its transfer to the plant cell nucleus. Other studies have shown that the MobA protein of plasmid RSF1010 is capable of mediating its transfer from Agrobacterium cells to plant cells by a similar process. We have demonstrated previously that plasmid pTF-FC2, which has some similarity to RSF1010, is also able to transfer DNA efficiently. In this study, we performed a mutational analysis of the roles played by A . tumefaciens VirD2 and pTF-FC2 MobA in DNA transfer-mediated by A. tumefaciens carrying pTF-FC2. We show that MobA+/VirD2+ and MobA+/VirD2- strains were equally proficient in their ability to transfer a pTF-FC2-derived plasmid DNA to plants and to transform them. However, the MobA-/VirD2+ strain showed a DNA transfer efficiency of 0.03% compared with that of the other two strains. This sharply contrasts with our results that VirD2 can rather efficiently cleave the oriT sequence of pFT-FC2 in vitro . We therefore conclude that MobA plays a major VirD2-independent role in plant transformation by pTF-FC2.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11103-004-1159-1 | DOI Listing |
Sci Rep
December 2024
Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland.
Studies of in situ plant response and adaptation to complex environmental stresses, are crucial for understanding the mechanisms of formation and functioning of ecosystems of anthropogenically transformed habitats. We study short- and long-term responses of photosynthetic apparatus (PSA) and anti-oxidant capacity to complex abiotic stresses of common plants Calamagrostis epigejos and Solidago gigantea in semi-natural (C) and heavy metal contaminated habitats (LZ). We found significant differences in leaf pigment content between both plant species growing on LZ plots and their respective C populations.
View Article and Find Full Text PDFSci Rep
December 2024
Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, No. 1 Shizishan Road, Wuhan, 430070, China.
The quality of cigar tobacco leaves is profoundly affected by the timing of their harvest, with both early and late collections resulting in inferior characteristics. While the relationship between maturity and physiological metabolic processes is acknowledged, a comprehensive understanding of the physiological behavior of cigar leaves harvested at different stages remains elusive. This research investigated the physiological and metabolomic profiles of the cigar tobacco variety CX-014, grown in Danjiangkou City, Hubei Province, with leaves sampled at 35 (T1), 42 (T2), 49 (T3), and 56 (T4) days post-inflorescence removal.
View Article and Find Full Text PDFSci Rep
December 2024
School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China.
Cinnamomum camphora, a key multifunctional tree species, primarily serves in landscaping. Leaf color is crucial for its ornamental appeal, undergoing a transformation to red that enhances the ornamental value of C. camphora.
View Article and Find Full Text PDFCurr Opin Biotechnol
December 2024
HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806, USA; Center for Advanced Bioenergy and Bioproducts Innovation, 1206 W. Gregory Drive (IGB), Urbana, IL 61801, USA. Electronic address:
Plants are an important source of food, energy, and bioproducts. Advances in genetics, genomics-assisted breeding, and biotechnology have facilitated the combining of desirable traits into elite cultivars. To ensure sustainable crop production in the face of climate challenges and population growth, it is essential to develop and implement techniques that increase crop yield and resilience in environments facing water scarcity, nutrient deficiencies, and other abiotic and biotic stressors.
View Article and Find Full Text PDFMeat Sci
December 2024
Laboratory of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong 271018, PR China. Electronic address:
Salmonella is a foodborne pathogen of global significance and is highly prevalent in pork. This study investigated the prevalence, contamination distribution, virulence genes and antibiotic resistance of Salmonella in 3 pork processors in the Shandong Province of China. Samples were collected from 13 different sampling sources across the slaughter procedures (600 samples) as well as at retail outlets supplied by these processors (45 samples).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!