Polydimethylsiloxane (PDMS) is used extensively to study cell-substrate interactions because its mechanical properties are easily tuned in physiologically relevant ranges. However, changes in mechanical properties also modulate surface chemistry and cell response. Here, we correlate the mechanical and surface properties of PDMS to vascular smooth muscle cell (VSMC) behavior. We find that a 5-fold increase in base:crosslinker ratio leads to approximately 40-fold decrease in elastic modulus but no significant differences in surface wettability. However, when polyelectrolyte multilayers are adsorbed to promote cell adhesion, wettability varies inversely with substrate stiffness. Despite these differences in hydrophobicity, the amount of adsorbed protein remains the same. In the absence of serum, there is a 39% decrease in cell attachment and a 42% decrease in spreading as the elastic modulus decreases from 1.79 to 0.05 MPa. In the presence of serum or adsorbed fibronectin, the differences in attachment and spreading are diminished. This is not the case for the rate of serum-stimulated cell proliferation, which remains inversely dependent on crosslinker concentration. We conclude that for the range of crosslinker concentrations investigated, the surface properties dominate the initial cell attachment and spreading, whereas the mechanical properties influence the long-term cell growth.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2004.08.009DOI Listing

Publication Analysis

Top Keywords

mechanical properties
12
surface chemistry
8
vascular smooth
8
smooth muscle
8
cell
8
muscle cell
8
cell response
8
surface properties
8
elastic modulus
8
cell attachment
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!